Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+) Bài bất đẳng thức:
\(\dfrac{2017a-a^2}{bc}=\dfrac{\left(a+b+c\right)a-a^2}{bc}=\dfrac{ab+ca}{bc}=\dfrac{a}{c}+\dfrac{a}{b}\left(1\right)\)
Tương tự: \(\left\{{}\begin{matrix}\dfrac{2017b-b^2}{ca}=\dfrac{b}{a}+\dfrac{b}{c}\left(2\right)\\\dfrac{2017c-c^2}{ab}=\dfrac{c}{a}+\dfrac{c}{b}\left(3\right)\end{matrix}\right.\)
\(\left(1\right)+\left(2\right)+\left(3\right)\Rightarrow\dfrac{2017a-a^2}{bc}+\dfrac{2017b-b^2}{bc}+\dfrac{2017c-c^2}{ab}=\dfrac{a+b}{c}+\dfrac{b+c}{a}+\dfrac{c+a}{b}\)
\(\sqrt{2}\left(\sum\sqrt{\dfrac{2017-a}{a}}\right)=\sqrt{2}\left(\sum\sqrt{\dfrac{\left(a+b+c\right)-a}{a}}\right)=\sqrt{2}\left(\sqrt{\dfrac{b+c}{a}}+\sqrt{\dfrac{c+a}{b}}+\sqrt{\dfrac{a+b}{2}}\right)\)
Bất đẳng thức cần chứng minh tương đương với:
\(\dfrac{a+b}{c}+\dfrac{b+c}{a}+\dfrac{c+a}{b}\ge\sqrt{2}\left(\sqrt{\dfrac{a+b}{c}}+\sqrt{\dfrac{b+c}{a}}+\sqrt{\dfrac{c+a}{b}}\right)\)
*Có: \(\sqrt{2.\dfrac{a+b}{c}}+\sqrt{2.\dfrac{b+c}{a}}+\sqrt{2.\dfrac{c+a}{b}}\le\dfrac{2+\dfrac{a+b}{c}}{2}+\dfrac{2+\dfrac{b+c}{a}}{2}+\dfrac{2+\dfrac{c+a}{b}}{2}=3+\dfrac{\dfrac{a+b}{c}+\dfrac{b+c}{a}+\dfrac{c+a}{b}}{2}\)
Ta chỉ cần chứng minh:
\(\dfrac{a+b}{c}+\dfrac{b+c}{a}+\dfrac{c+a}{b}\ge3+\dfrac{\dfrac{a+b}{c}+\dfrac{b+c}{a}+\dfrac{c+a}{b}}{2}\)
hay \(\dfrac{a+b}{c}+\dfrac{b+c}{a}+\dfrac{c+a}{b}\ge6\) (cái này chị tự chứng minh nhé)
Lâu rồi không lên Hoc24
Áp dụng bất đẳng thức Minkowski, Schwarz và AM - GM ta có:
\(S\ge\sqrt{\left(a+b+c\right)^2+\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2}\ge\sqrt{\left(a+b+c\right)^2+\left(\dfrac{9}{a+b+c}\right)^2}=\sqrt{\left[\left(a+b+c\right)^2+\dfrac{81}{16\left(a+b+c\right)^2}\right]+\dfrac{81.15}{16\left(a+b+c\right)^2}}\ge\sqrt{\dfrac{9}{2}+\dfrac{135}{4}}=\sqrt{\dfrac{153}{4}}=\dfrac{3\sqrt{17}}{2}\).
Sau khi chọn đc hệ số điểm rơi là 16 thì cơ sở nào tách tiếp ra 16 số rồi áp dụng cosi nữa vậy ạ??
\(P=\dfrac{\sqrt{a-2}}{a}+\dfrac{\sqrt[3]{b-3}}{b}+\dfrac{\sqrt[4]{c-6}}{c}\)
\(=\dfrac{\sqrt{\left(a-2\right).2}}{a\sqrt{2}}+\dfrac{\sqrt[3]{\left(b-3\right).\dfrac{3}{2}.\dfrac{3}{2}}}{b\sqrt[3]{\dfrac{9}{4}}}+\dfrac{\sqrt[4]{\left(c-6\right).2.2.2}}{c\sqrt[3]{8}}\)
\(\le\dfrac{a-2+2}{2a\sqrt{2}}+\dfrac{b-3+\dfrac{3}{2}+\dfrac{3}{2}}{3b\sqrt[3]{\dfrac{9}{4}}}+\dfrac{c-6+2+2+2}{4c\sqrt[4]{8}}\)
\(=\dfrac{a}{2a\sqrt{2}}+\dfrac{b}{3b\sqrt[3]{\dfrac{9}{4}}}+\dfrac{c}{4c\sqrt[4]{8}}=\dfrac{1}{2\sqrt{2}}+\dfrac{1}{3\sqrt[3]{\dfrac{9}{4}}}+\dfrac{1}{4\sqrt[4]{8}}\)
Vậy \(P_{max}=\dfrac{1}{2\sqrt{2}}+\dfrac{1}{3\sqrt[3]{\dfrac{9}{4}}}+\dfrac{1}{4\sqrt[4]{8}}\)
Đẳng thức xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}a-2=2\\b-3=\dfrac{3}{2}\\c-6=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=4\\b=\dfrac{9}{2}\\c=8\end{matrix}\right.\)
\(P=\dfrac{bc\sqrt{a-2}+ac\sqrt[3]{b-3}+ab\sqrt[4]{c-6}}{abc}\)
\(=\dfrac{\sqrt{a-2}}{a}+\dfrac{\sqrt[3]{b-3}}{b}+\dfrac{\sqrt[4]{c-6}}{c}\)
Áp dụng BĐT AM-GM ta có:
\(=\dfrac{\sqrt{2\left(a-2\right)}}{\sqrt{2}a}+\dfrac{\sqrt[3]{2\left(b-3\right)}}{\sqrt[3]{2}b}+\dfrac{\sqrt[4]{2\left(c-6\right)}}{\sqrt[4]{2}c}\)
\(\le\dfrac{\dfrac{2+a-2}{2}}{\sqrt{2}a}+\dfrac{\dfrac{2+b-3+1}{3}}{\sqrt[3]{2}b}+\dfrac{\dfrac{2+c-6+1+1+1+1}{4}}{\sqrt[4]{2}c}\)
\(=\dfrac{\dfrac{a}{2}}{\sqrt{2}a}+\dfrac{\dfrac{b}{3}}{\sqrt[3]{2}b}+\dfrac{\dfrac{c}{4}}{\sqrt[4]{2}c}=\dfrac{1}{2\sqrt{2}}+\dfrac{1}{3\sqrt[3]{2}}+\dfrac{1}{4\sqrt[4]{2}}\)
Ta chứng minh 2 bất đẳng thức phụ sau: với x, y, z dương thì:
\(x^4+y^4+z^4\ge xyz\left(x+y+z\right)\left(1\right)\)
\(\left(1+x\right)\left(1+y\right)\left(1+z\right)\ge\left(1+\sqrt[3]{xyz}\right)^3\left(2\right)\)
+ Chứng minh BĐT (1), sử dụng BĐT AM - GM:
\(x^4+x^4+y^4+z^4\ge4x^2yz\)
\(y^4+y^4+x^4+z^4\ge4xy^2z\)
\(z^4+z^4+x^4+y^4\ge4xyz^2\)
Cộng dồn lại ta có: \(x^4+y^4+z^4\ge xyz\left(x+y+z\right)\)
+ Chứng minh BĐT (2). Ta có:
\(\left(1+x\right)\left(1+y\right)\left(1+z\right)=1+x+y+z+xy+yz+xyz\ge1+3\sqrt[3]{xyz}+3\sqrt[3]{x^2y^2z^2}+xyz=\left(1+\sqrt[3]{xyz}\right)^3\)
Bây giờ ta quay lại chứng minh BĐT ở đề.
BĐT cần chứng minh tương đương với BĐT sau:
\(\sqrt[4]{\left(1+\dfrac{1}{a}\right)^4+\left(1+\dfrac{1}{b}\right)^4+\left(1+\dfrac{1}{c}\right)^4}\ge\sqrt[4]{3}+\dfrac{\sqrt[4]{243}}{2+abc}\)
\(\Leftrightarrow\left(1+\dfrac{1}{a}\right)^4+\left(1+\dfrac{1}{b}\right)^4+\left(1+\dfrac{1}{c}\right)^4\ge3\left(1+\dfrac{3}{2+abc}\right)^4\)
Sử dụng BĐT (1) ta có:
\(\left(1+\dfrac{1}{a}\right)^4+\left(1+\dfrac{1}{b}\right)^4+\left(1+\dfrac{1}{c}\right)^4\ge\left(1+\dfrac{1}{a}\right)\left(1+\dfrac{1}{b}\right)\left(1+\dfrac{1}{c}\right)\left(3+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)
Sử dụng BĐT (2) và BĐT AM - GM ta có:
\(\left(1+\dfrac{1}{a}\right)\left(1+\dfrac{1}{b}\right)\left(1+\dfrac{1}{c}\right)\left(3+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge\left(1+\dfrac{1}{\sqrt[3]{abc}}\right)^3\left(3+\dfrac{3}{\sqrt[3]{abc}}\right)\)
\(\Rightarrow\left(1+\dfrac{1}{a}\right)\left(1+\dfrac{1}{b}\right)\left(1+\dfrac{1}{c}\right)\left(3+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge3\left(1+\dfrac{1}{\sqrt[3]{abc.1.1}}\right)^4\ge3\left(1+\dfrac{3}{2+abc}\right)^4\)
Vậy BĐT đã được chứng minh. Đẳng thức xảy ra <=> a = b = c.
Bài 1:
Áp dụng BĐT AM-GM ta có:
$\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\geq 3\sqrt[3]{\frac{1}{(a+1)(b+1)(c+1)}}$
$\frac{a}{a+1}+\frac{b}{b+1}+\frac{c}{c+1}\geq 3\sqrt[3]{\frac{abc}{(a+1)(b+1)(c+1)}}$
Cộng theo vế và thu gọn:
$\frac{a+1}{a+1}+\frac{b+1}{b+1}+\frac{c+1}{c+1}\geq \frac{3(1+\sqrt[3]{abc})}{\sqrt[3]{(a+1)(b+1)(c+1)}}$
$\Leftrightarrow 3\geq \frac{3(1+\sqrt[3]{abc})}{\sqrt[3]{(a+1)(b+1)(c+1)}}$
$\Rightarrow (a+1)(b+1)(c+1)\geq (1+\sqrt[3]{abc})^3$
Ta có đpcm.
Bài 2:
$a^3+a^3+a^3+a^3+b^3+c^3\geq 6\sqrt[6]{a^{12}b^3c^3}=6a^2\sqrt{bc}$
$b^3+b^3+b^3+b^3+a^3+c^3\geq 6b^2\sqrt{ac}$
$c^3+c^3+c^3+c^3+a^3+b^3\geq 6c^2\sqrt{ab}$
Cộng theo vế và rút gọn thu được:
$a^3+b^3+c^3\geq a^2\sqrt{bc}+b^2\sqrt{ac}+c^2\sqrt{ab}$
Ta có đpcm.
Dấu "=" xảy ra khi $a=b=c$
Dễ dàng c/m : \(\dfrac{1}{a+2}+\dfrac{1}{b+2}+\dfrac{1}{c+2}=1\)
Ta có : \(\dfrac{1}{\sqrt{2\left(a^2+b^2\right)}+4}\le\dfrac{1}{a+b+4}\le\dfrac{1}{4}\left(\dfrac{1}{a+2}+\dfrac{1}{b+2}\right)\)
Suy ra : \(\Sigma\dfrac{1}{\sqrt{2\left(a^2+b^2\right)}+4}\le2.\dfrac{1}{4}\left(\dfrac{1}{a+2}+\dfrac{1}{b+2}+\dfrac{1}{c+2}\right)=\dfrac{1}{2}.1=\dfrac{1}{2}\)
" = " \(\Leftrightarrow a=b=c=1\)
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=1\Leftrightarrow ab+bc+ca=abc\)
Ta có: \(\sqrt{a+bc}=\sqrt{\dfrac{a^2+abc}{a}}=\sqrt{\dfrac{\left(a+b\right)\left(a+c\right)}{a}}\)
thiết lập tương tự ,bất đẳng thức cần chứng minh tương đương:
\(\Leftrightarrow\sum\sqrt{\dfrac{\left(a+b\right)\left(a+c\right)}{a}}\ge\sqrt{abc}+\sqrt{a}+\sqrt{b}+\sqrt{c}\)
\(\Leftrightarrow\sum\sqrt{bc\left(a+b\right)\left(a+c\right)}\ge abc+\sqrt{abc}\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)\)
\(\Leftrightarrow\sum\sqrt{\left(b^2+ab\right)\left(c^2+ac\right)}\ge abc+\sum a\sqrt{bc}\)
Điều này luôn đúng theo BĐT Bunyakovsky:
\(\sum\sqrt{\left(b^2+ab\right)\left(c^2+ac\right)}\ge\sum\left(bc+a\sqrt{bc}\right)=abc+\sum a\sqrt{bc}\)
Dấu = xảy ra khi a=b=c=3