Tìm x , biết
\(x^2-9x=0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left|x^3+x\right|-\left|9x^2+9\right|=0\)
\(\Leftrightarrow\left|x\left(x^2+1\right)\right|-9\left|x^2+1\right|=0\)
\(\Leftrightarrow\left(\left|x\right|-9\right)\left(x^2+1\right)=0\)
\(\Leftrightarrow\left|x\right|=9\left(x^2+1\ge1>0\right)\Leftrightarrow x=\pm9\)
Vậy ...
\(\left|x^3+x\right|-\left|9x^2+9\right|=0\)
\(TH1:\left\{{}\begin{matrix}\left|x^3+x\right|=0\\\left|9x^2+9\right|=0\end{matrix}\right.\)
\(\text{Vì }9x^2\ge0\)
\(\Rightarrow9x^2+9\ge9\)
\(TH2:\left|x^3+x\right|=\left|9x^2+9\right|\)
\(\Rightarrow\left[{}\begin{matrix}x^3+x=9x^2-9\\x^3+x=9x^2+9\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x^3+x+9x^2+9=0\\x^3+x-9x^2-9=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x.\left(x^2+1\right)+9.\left(x^2+1\right)=0\\x.\left(x^2+1\right)-9.\left(x^2+1\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-9\\x=9\end{matrix}\right.\)
=>|x^3+x|=|9x^2+9|
=>x^3+x=9x^2+9 hoặc x^3+x=-9x^2-9
=>x^3-9x^2+x-9=0 hoặc x^3+9x^2+x+9=0
=>x+9=0 hoặc (x-9)(x^2+1)=0
=>x=9 hoặc x=-9
Ta có: \(x^3+6x^2+9x=0\)
\(\Leftrightarrow x\left(x+3\right)^2=0\)
hay \(x\in\left\{0;-3\right\}\)
\(\left(5-x\right)\left(9x^2-4\right)=0\)
=>\(\left(x-5\right)\left(3x-2\right)\left(3x+2\right)=0\)
=>\(\left[{}\begin{matrix}x-5=0\\3x-2=0\\3x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=\dfrac{2}{3}\\x=-\dfrac{2}{3}\end{matrix}\right.\)
\(\left(5-x\right)\left(9x^2-4\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}5-x=0\\9x^2-4=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=5\\x^2=\dfrac{4}{9}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=5\\x=\dfrac{2}{3}\\x=-\dfrac{2}{3}\end{matrix}\right.\)
\(x^3-4x^2-9x+36=0\)
\(x^2\left(x-4\right)-9\left(x-4\right)=0\)
\(\left(x-4\right)\left(x^2-9\right)=0\)\(\)
\(\Rightarrow x-4=0\) hay \(x^2-9=0\)
\(\Rightarrow x=4\) hay \(x^2=9=3^2\)
\(\Rightarrow x=4\) hay \(x=\pm3\)
⇔x2(x-4) -9(x-4) = 0
⇔(x-4).(x-3).(x+3) = 0
\(\Leftrightarrow\left[{}\begin{matrix}x-4=0\\x-3=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=3\\x=-3\end{matrix}\right.\)
\(x^2-9x+20=0\)
\(\Leftrightarrow x^2-4x-5x+20=0\)
\(\Leftrightarrow\left(x^2-4x\right)-\left(5x-20\right)=0\)
\(\Leftrightarrow x\left(x-4\right)-5\left(x-4\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(x-5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-4=0\\x-5=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=5\end{matrix}\right.\)
Vậy \(x=4\) hoặc \(x=5\)
a/ => x(x2 - 9) = 0
=> x(x - 3)(x + 3) = 0
=> x = 0
hoặc x - 3 = 0 => x = 3
hoặc x + 3 = 0 => x = -3
Vậy x = 0 ; x = 3 ;x = -3
b/ => x2 - 6x + x - 6 = 0
=> x(x - 6) + (x - 6) = 0
=> (x + 1)(x - 6) = 0
=> x + 1 = 0 => x = -1
hoặc x - 6 = 0 => x = 6
Vậy x = -1 ; x = 6
a)
x(x^2-9)=0
x(x^2-3^2)=0
x(x-3)(x+3)
b) x^2-6x+x-6=0
x(x-6)+(x-6)=0
(x-6)(x+1)=0
\(x^2-9x=0\Leftrightarrow x\left(x-9\right)=0\Leftrightarrow\left\{{}\begin{matrix}x=0\\x-9=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=0\\x=9\end{matrix}\right.\) vậy \(x=0;x=9\)
\(x^2-9x=0\\ x\left(x-9\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=0\\x-9=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=9\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}x=0\\x=9\end{matrix}\right.\)