Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(6xy+4y-9x-17=0\)
\(6xy+4y-9x=0+17\)
\(6xy+4y-9x=17\)
\(2y\left(3x+2\right)-9x=17\)
\(2y\left(3x+2\right)-9x-6=17-6\)
\(2y\left(3x+2\right)-3\left(3x+2\right)=11\)
\(\Rightarrow\left(2y-3\right)\left(3x+2\right)=11\)
Vì \(x,y\in Z\) nên \(2y-3\) ; \(3x+2\) \(\in Z\)
\(2y-3;3x+2\inƯ\left(11\right)\)
Ta có bảng :
\(x\) | \(3x+2\) | \(2y-3\) | \(y\) | \(Đk\) \(x,y\in Z\) |
\(-0,3\) | \(1\) | \(11\) | \(7\) | Loại |
\(3\) | \(11\) |
\(1\) | \(2\) | TM |
\(-4,3\) | \(-11\) | \(-1\) | \(1\) | Loại |
\(-1\) | \(-1\) | \(-11\) | \(-4\) | TM |
Vậy cặp giá trị \(\left(x,y\right)\) cần tìm là :
\(\left(3,2\right);\left(-1;-4\right)\)
Chúc bn học tốt!!
a) Ta có : \(\left|x-2\right|\ge0\forall x\)
\(\left|x+y-10\right|\ge0\forall x\)
Nên : \(\left|x-2\right|+\left|x+y-10\right|\ge0\forall x\)
Mà đề bài cho \(\left|x-2\right|+\left|x+y-10\right|\le0\)
Nên : \(\hept{\begin{cases}x-2=0\\x+y-10=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\2+y-10=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=2\\y=8\end{cases}}}\)
Vậy x = 2 ; y = 8
Ta có : \(\left|x-2\right|\ge0\forall x\)
\(\left|x.y-6\right|\ge0\forall x,y\)
Mà : \(\left|x-2\right|+\left|x.y-6\right|=0\)
Nên : pt \(\Leftrightarrow\hept{\begin{cases}x-2=0\\x.y-6=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\x.y=6\end{cases}\Leftrightarrow}\hept{\begin{cases}x=2\\2y=6\end{cases}\Leftrightarrow}\hept{\begin{cases}x=2\\y=3\end{cases}}}\)
\(a.\left(x-4\right)\left(x+7\right)=0\)
\(\Rightarrow\hept{\begin{cases}x-4=0\\x+7=0\end{cases}\Rightarrow\hept{\begin{cases}x=4\\x=-7\end{cases}}}\)
\(b.x\left(x+3\right)=0\)
\(\Rightarrow\hept{\begin{cases}x=0\\x+3=0\end{cases}\Rightarrow\hept{\begin{cases}x=0\\x=-3\end{cases}}}\)
\(c.\left(x-2\right)\left(5-x\right)=0\)
\(\Rightarrow\hept{\begin{cases}x-2=0\\5-x=0\end{cases}\Rightarrow\hept{\begin{cases}x=2\\x=5\end{cases}}}\)
\(d.\left(x-1\right)\left(x^2+1\right)=0\)
\(\Rightarrow\hept{\begin{cases}x-1=0\\x^2+1=0\end{cases}\Rightarrow\hept{\begin{cases}x=1\\x^2=-1\end{cases}\Rightarrow}\hept{\begin{cases}x=1\\x=-\left(-1\right)or\left(-1\right)\end{cases}}}\)
a) ( x - 4 ) . ( x + 7 ) = 0
một phép nhân có tích bằng 0
=> một trong hai thừa số này bằng 0
+) nếu x - 4 = 0 => x = 0 + 4 = 4
+) nếu x + 7 = 0 => x = 0 - 7 = -7
vậy x = { 4 ; -7 }
b) x . ( x + 3 ) = 0
x + 3 = 0 : x
x + 3 = 0
x = 0 - 3
x = -3
vậy x = -3
c) ( x - 2 ) . ( 5 - x ) = 0
một phép nhân có tích bằng 0
=> một trong hai thừa số này bằng 0
+) nếu x - 2 = 0 => x = 0 + 2 = 2
+) nếu 5 - x = 0 => x = 5 - 0 = 5
vậy x = { 2 ; 5 }
d) ( x - 1 ) . ( x2 + 1 ) = 0
=> x - 1 = 0 hoặc x2 + 1 = 0
+) x - 1 = 0 => x = 0 + 1 = 1
+) x2 + 1 = 0 => x2 = 0 - 1 = -1 => x = -1
vậy x = { 1 ; -1 }
a) \(\left(x-4\right)\left(x-7\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x-4=0\\x-7=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=4\\x=7\end{array}\right.\)
b) \(x\left(x+3\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x+3=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x=-3\end{array}\right.\)
c) \(\left(x-2\right)\left(5-x\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x-2=0\\5-x=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=2\\x=5\end{array}\right.\)
d) \(\left(x-1\right)\left(x^2+1\right)=0\)
\(\Leftrightarrow x-1=0\) ( Vì \(x^2+1>0\) )
\(\Leftrightarrow x=1\)
a)
\(\left(x-4\right)\left(x-7\right)=0\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=4\\x=7\end{array}\right.\)
Vậy x = 4 ; x = 7
b)
\(x\left(x+3\right)=0\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=0\\x=-3\end{array}\right.\)
Vậy x = 0 ; x = - 3
c)
\(\left(x-2\right)\left(5-x\right)=0\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=2\\x=5\end{array}\right.\)
Vậy x = 2 ; x = 5
d)
\(\left(x-1\right)\left(x^2+1\right)=0\)
Mà \(x^2+1\ge1\)
=> x = - 1
Vậy x = - 1
Bài 1 :
Lý luận chung cho cả 2 câu a) và b) :
Vì giá trị tuyệt đối luôn lớn hơn hoặc bằng 0, mà tổng của chúng lại bằng 0
a) \(\Rightarrow\hept{\begin{cases}x-2y=0\\y-1=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=2\\y=1\end{cases}}\)
b) \(\Rightarrow\hept{\begin{cases}x-3=0\\x-2y-5=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=3\\y=-1\end{cases}}\)
\(x^2-9x=0\Leftrightarrow x\left(x-9\right)=0\Leftrightarrow\left\{{}\begin{matrix}x=0\\x-9=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=0\\x=9\end{matrix}\right.\) vậy \(x=0;x=9\)
\(x^2-9x=0\\ x\left(x-9\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=0\\x-9=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=9\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}x=0\\x=9\end{matrix}\right.\)