K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2017

Bài 1:

\(\Delta ABD-\text{vuông}-\text{tại}-A\)

\(\Rightarrow\tan B=\dfrac{AD}{AB}\)

\(\Rightarrow AD=\tan50^0\times AB\approx2,68621\left(cm\right)\)

\(S_{ABCD}=\dfrac{1}{2}\times\left(AB+CD\right)\times AD\)

\(\Rightarrow CD=\dfrac{2S_{ABCD}}{AD}-AB\approx5,15569\left(cm\right)\)

Kẻ BH _I_ CD.

\(ABHD-\text{là}-h.c.n.\left(\widehat{BAD}=\widehat{ADH}=\widehat{DHB}=90^0\right)\)

\(\Rightarrow AB=DH=2,254\left(cm\right)-\text{và}-AD=BH\approx2,68621\left(cm\right)\)

\(\Rightarrow HC=DC-DH\approx2,90169\left(cm\right)\)

\(\Delta HBC-\text{vuông}-\text{tại}-H\)

\(\Rightarrow BC^2=BH^2+HC^2\left(ptg\right)\)

\(\Rightarrow BC=\sqrt{BH^2+HC^2}\approx3,95418\left(cm\right)\)

~ ~ ~

\(\Delta HBC-\text{vuông}-\text{tại}-H\)

\(\Rightarrow\tan\widehat{HBC}=\dfrac{HC}{HB}\)

\(\Rightarrow\widehat{HBC}\approx47^012'29,89"\)

\(\Rightarrow\widehat{ABC}=\widehat{ABH}+\widehat{HBC}\approx137^012'29,89"\)

\(\widehat{ABC}+\widehat{BCD}=180^0\) (2 góc trong cùng phía, AB // CD)

\(\Rightarrow\widehat{BCD}\approx42^047'30,11"\)

9 tháng 8 2017

bài 2:

ta có

\(\left(12\cdot13\cdot14\cdot...\cdot25=12\cdot13\cdot...\cdot19\right)\cdot\left(20\cdot...25\right)=3047466240\cdot127512000\)

(sử dụng tính năng tính tích trong máy tính)

mặt khác, ta có:

\(3047466240\cdot127512000=\left(2^8\cdot3^4\cdot5\cdot7\cdot13\cdot17\cdot19\right)\cdot\left(2^6\cdot3^2\cdot5^3\cdot7\cdot11\cdot23\right)=2^{14}\cdot3^6\cdot5^4\cdot7^2\cdot11\cdot13\cdot17\cdot19\cdot23\)

vậy số a cần tìm là \(2^{12}\cdot3^4\cdot5^4=207360000\)

8 tháng 8 2017

Bài 3:

Gán D=0

Nhập : \(D=D+1:A=\frac{\left(3+\sqrt{2}\right)^D-\left(3-\sqrt{2}\right)^D}{2\sqrt{2}}CALC=\)

Ấn = liên tục 

\(D=D+1=1=>U_1=1\)

\(D=D+1=2=>u_2=6\)

\(D=D+1=3=>U_3=29\)

\(D=D+1=4=>U_4=132\)

\(D=D+1=5=>U_5=589\)

Gọi công thức truy hồi dạng tổng quát là :

\(U_{n+2}=aU_{n+1}+bU_n+c\)

\(\hept{\begin{cases}U_3=aU_2+bU_1+c\\U_4=aU_3+bU_2+c\\U_5=aU_4+bU_3+c\end{cases}}\)

\(\hept{\begin{cases}6a+b+c=29\\29a+6b+c=132\\132a+29b+c=589\end{cases}}\)

\(\hept{\begin{cases}a=6\\b=-7\\c=0\end{cases}}\)

Vậy \(U_{n+2}=6U_{n+1}-7U_n\)

9 tháng 8 2017

b) Có Ct truy hồi rời bạn bấm: Alpha A:=6Alpha B-Alpha C:Alpha C=Alpha A-6Alpha B:Alpha B=6Alpha C-Alpha A

                   ==========.......=====

Như vậy là hết quy trình bấm nhé.

Bài 1: Cho tam giác ABC .Trên tia AC lấy điểm M sao cho AM = AB. Trên tia AB lấy điểm N sao cho AN = AC. Chứng minh tứ giác BMCN là hình thangBài 2: Cho tam giác ABC vuông tại A. Lấy điểm M thuộc cạnh BC sao cho AM= 1/2 BC, N là trung điểm cạnh AB. Chứng minh:a) Tam giác ABC cân ---- b) Tứ giác MNAC là hình thang vuông Bài 3: Cho hình thang cân ABCD ( AB // CD ) ---- a) Chứng minh góc ACD = góc BCD ---- b) Gọi E là giao điểm của...
Đọc tiếp

Bài 1: Cho tam giác ABC .Trên tia AC lấy điểm M sao cho AM = AB. Trên tia AB lấy điểm N sao cho AN = AC. Chứng minh tứ giác BMCN là hình thang

Bài 2: Cho tam giác ABC vuông tại A. Lấy điểm M thuộc cạnh BC sao cho AM= 1/2 BC, N là trung điểm cạnh AB. Chứng minh:

a) Tam giác ABC cân ---- b) Tứ giác MNAC là hình thang vuông 

Bài 3: Cho hình thang cân ABCD ( AB // CD ) ---- a) Chứng minh góc ACD = góc BCD ---- b) Gọi E là giao điểm của AC và BD. C/minh EA = EB

Bài 4: Cho ABCD là hình thang ( AB // CD, AB < CD ). Kẻ các đường cao AE,BF của hình thang. C/minh rằng DE = CF 

Bài 5: Cho ABCD là hình thang ( AB // CD ) có DB là đường phân giác góc D và AE là đường phân giác góc A ( E thuộc DC ). Biết AE // BC và O là giao điểm của AE với DB. CMR:

a) AE vuông góc với DB

b) AD // BE và AD = BE

c) E là trung điểm của DC 

d) Xác định dạng của tứ giác BCEO

e) Biết góc BEC = 80 độ. Hãy tính các góc của hình thang ABCD 

1

Bài 4:

Xét ΔAED vuông tại E và ΔBFC vuông tại F có

AD=BC

góc D=góc C

Do đó: ΔAED=ΔBFC

=>DE=CF
Bài 3:

a: Xét ΔADC và ΔBCD có

AD=BC

AC=BD

DC chung

Do đó: ΔADC=ΔBCD

=>góc ACD=góc BDC

b: Ta co: góc ACD=góc BDC

=>góc EAB=góc EBA
=>ΔEAB cân tại E

cảm ơn ạ ~

31 tháng 8 2019

Bài 1: ( hình tự vẽ )

Vì \(AD//BC\left(gt\right)\)

\(\Rightarrow\widehat{A}+\widehat{B}=180^0\)( 2 góc trong cùng phía )  mà\(\widehat{A}-\widehat{B}=20^0\left(gt\right)\)

\(\Rightarrow\hept{\begin{cases}\widehat{A}=100^0\\\widehat{B}=80^0\end{cases}}\)

 \(\widehat{D}=2\widehat{B}=2.80^0=160^0\)

Do \(AD//BC\left(gt\right)\)

\(\Rightarrow\widehat{D}+\widehat{C}=180^0\)( 2 góc trong cùng phía )

\(\Rightarrow\widehat{C}=20^0\)

Vậy ...

4 tháng 3 2022

a) -Qua B kẻ đường thẳng vuông góc với DC tại E.

-Xét tứ giác ABED: \(\widehat{ADE}=\widehat{BAD}=\widehat{DEB}=90^0\)

\(\Rightarrow\)ABED là hình chữ nhật nên \(AD=BE\)\(AB=ED=4\left(cm\right)\)

-Xét △BEC vuông tại E:

\(BE^2+EC^2=BC^2\) (định lí Py-ta-go)

\(\Rightarrow BE^2+\left(DC-DE\right)^2=BC^2\)

\(\Rightarrow BE^2+\left(9-4\right)^2=13^2\)

\(\Rightarrow BE^2=13^2-5^2=144\)

\(\Rightarrow BE=AD=12\left(cm\right)\)

b) \(S_{ABCD}=\dfrac{AD.\left(AB+CD\right)}{2}=\dfrac{12.\left(4+9\right)}{2}=78\left(cm^2\right)\)

c) -Đề sai.

14 tháng 1 2019

Ý đầu thì em tính bt S= ( đáy  lớn + đáy nhỏ ) nhân chiều cao  rồi tất cả chia 2=(( 30+50)nhân 25 ):2 =1000. Ý sau em tính diện tích ACD = 50.25 :2=625 rồi lấy diện tích hình thang trừ diện tích ACD =1000-625=375

14 tháng 1 2019

Nv Hieu nhầm rồi bài của em là tam giác ABC chứ ko phải ACD

23 tháng 8 2020

a) Xét 2 tam giác ADB và BCD có:

góc DAB = góc DBC (gt)

góc ABD = góc BDC ( so le trong )

nên tam giác ADB đồng dạng với tam giác BDC.(1)

b) Từ (1) ta được AB/BC = DB/CD = AB/BD

hay ta có; AD/BC = AB/BD <==> 3,5/BC = 2,5/5

==> BC= 3,5*5/2,5 = 7 (cm)

ta cũng có: DB/CD = AB/BD <==> 5/CD = 2,5/5

==> CD = 5*5/2,5 =10 (cm)

c) Từ (1) ta được;

AD/BC = DB/CD = AB/BD hay 3.5/7 = 5/10 = 2,5/5 = 1/2 .

ta nói tam giác ADB đồng giạc với tam giác BCD theo tỉ số đồng dạng là 1/2

mà tỉ số diện tích bằng bình phương tỉ số động dạng

do đó S ADB/ S BCD = (1/2)^2 = 1/4

23 tháng 5 2021

Giusp mình với.Cần gấp lắm