K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2017

Bài 1:

\(\Delta ABD-\text{vuông}-\text{tại}-A\)

\(\Rightarrow\tan B=\dfrac{AD}{AB}\)

\(\Rightarrow AD=\tan50^0\times AB\approx2,68621\left(cm\right)\)

\(S_{ABCD}=\dfrac{1}{2}\times\left(AB+CD\right)\times AD\)

\(\Rightarrow CD=\dfrac{2S_{ABCD}}{AD}-AB\approx5,15569\left(cm\right)\)

Kẻ BH _I_ CD.

\(ABHD-\text{là}-h.c.n.\left(\widehat{BAD}=\widehat{ADH}=\widehat{DHB}=90^0\right)\)

\(\Rightarrow AB=DH=2,254\left(cm\right)-\text{và}-AD=BH\approx2,68621\left(cm\right)\)

\(\Rightarrow HC=DC-DH\approx2,90169\left(cm\right)\)

\(\Delta HBC-\text{vuông}-\text{tại}-H\)

\(\Rightarrow BC^2=BH^2+HC^2\left(ptg\right)\)

\(\Rightarrow BC=\sqrt{BH^2+HC^2}\approx3,95418\left(cm\right)\)

~ ~ ~

\(\Delta HBC-\text{vuông}-\text{tại}-H\)

\(\Rightarrow\tan\widehat{HBC}=\dfrac{HC}{HB}\)

\(\Rightarrow\widehat{HBC}\approx47^012'29,89"\)

\(\Rightarrow\widehat{ABC}=\widehat{ABH}+\widehat{HBC}\approx137^012'29,89"\)

\(\widehat{ABC}+\widehat{BCD}=180^0\) (2 góc trong cùng phía, AB // CD)

\(\Rightarrow\widehat{BCD}\approx42^047'30,11"\)

9 tháng 8 2017

bài 2:

ta có

\(\left(12\cdot13\cdot14\cdot...\cdot25=12\cdot13\cdot...\cdot19\right)\cdot\left(20\cdot...25\right)=3047466240\cdot127512000\)

(sử dụng tính năng tính tích trong máy tính)

mặt khác, ta có:

\(3047466240\cdot127512000=\left(2^8\cdot3^4\cdot5\cdot7\cdot13\cdot17\cdot19\right)\cdot\left(2^6\cdot3^2\cdot5^3\cdot7\cdot11\cdot23\right)=2^{14}\cdot3^6\cdot5^4\cdot7^2\cdot11\cdot13\cdot17\cdot19\cdot23\)

vậy số a cần tìm là \(2^{12}\cdot3^4\cdot5^4=207360000\)

8 tháng 8 2017

Bài 3:

Gán D=0

Nhập : \(D=D+1:A=\frac{\left(3+\sqrt{2}\right)^D-\left(3-\sqrt{2}\right)^D}{2\sqrt{2}}CALC=\)

Ấn = liên tục 

\(D=D+1=1=>U_1=1\)

\(D=D+1=2=>u_2=6\)

\(D=D+1=3=>U_3=29\)

\(D=D+1=4=>U_4=132\)

\(D=D+1=5=>U_5=589\)

Gọi công thức truy hồi dạng tổng quát là :

\(U_{n+2}=aU_{n+1}+bU_n+c\)

\(\hept{\begin{cases}U_3=aU_2+bU_1+c\\U_4=aU_3+bU_2+c\\U_5=aU_4+bU_3+c\end{cases}}\)

\(\hept{\begin{cases}6a+b+c=29\\29a+6b+c=132\\132a+29b+c=589\end{cases}}\)

\(\hept{\begin{cases}a=6\\b=-7\\c=0\end{cases}}\)

Vậy \(U_{n+2}=6U_{n+1}-7U_n\)

9 tháng 8 2017

b) Có Ct truy hồi rời bạn bấm: Alpha A:=6Alpha B-Alpha C:Alpha C=Alpha A-6Alpha B:Alpha B=6Alpha C-Alpha A

                   ==========.......=====

Như vậy là hết quy trình bấm nhé.

BÀI 1: Cho hình bình hành ABCD có diện tích bằng 1. Gọi M là trung điểm của cạnh BC, N là giao điểm của AM và BD. Tính diện tích tứ giác MNDC.BÀI 2 : Một đường tròn nội tiếp trong một hình vuông có cạnh bằng 2,3358909 , sau đó nội tiếp trong hình tròn đó một hình vuông và quá trình đó cứ tiếp diễn như thế mãi. Nếu gọi Sn là tổng các diện tích của n hình tròn đầu tiên nội tiếp như thế....
Đọc tiếp

BÀI 1: Cho hình bình hành ABCD có diện tích bằng 1. Gọi M là trung điểm của cạnh BC, N là giao điểm của AM và BD. Tính diện tích tứ giác MNDC.

BÀI 2 : Một đường tròn nội tiếp trong một hình vuông có cạnh bằng 2,3358909 , sau đó nội tiếp trong hình tròn đó một hình vuông và quá trình đó cứ tiếp diễn như thế mãi. Nếu gọi Sn là tổng các diện tích của n hình tròn đầu tiên nội tiếp như thế. Tính S20

BÀI 3: Cho các số \(u_1,u_2,u_3,...,u_n,u_{n+1},....\)thỏa mãn \(u_n+u_{n+1}=u_{n+2}\)\(n\ge1\)và \(u_2=3;u_{50}=30\). Tính giá trị của \(S=u_1+u_2+u_3+...+u_{48}\)

BÀI 4: Tính giá trị biểu thức: \(N=\frac{\left(2^4+\frac{1}{4}\right)\left(4^4+\frac{1}{4}\right)\left(6^4+\frac{1}{4}\right)...\left(2008^4+\frac{1}{4}\right)}{\left(1^4+\frac{1}{4}\right)\left(3^4+\frac{1}{4}\right)\left(5^4+\frac{1}{4}\right)...\left(2007^4+\frac{1}{4}\right)}\)

BÀI 5: Tìm các cặp số (x, y) nguyên dương nghiệm gần đúng của phương trình:

\(5x^5-20\left(72x-y\right)^2=16277165\)

MỌI NGƯỜI GIÚP MK VỚI! CHỈ TICK BẠN NÀO TRẢ LỜI TRƯỚC T2 (7/7/2017) THUI NHA!

7
5 tháng 8 2017

Hahaha. Hỏi một phát 5 câu lun hả bà!!!!!

Bài 5 nhé:

Ta có: (làm hơi tắt nhưng cái này cậu tự biến đổi đc)

\(y=72x-\sqrt{\frac{5x^5-16277165}{20}}\) => \(5x^5-\frac{16277165}{20}\ge0\)( vì có căn nên cái bên trong lun lớn hon hoặc = 0)

=> \(x\ge\sqrt[5]{\frac{16277165}{5}}=20,0688....\)mà x nguyên dương => \(x\ge21\)

Nhập vào máy tính: X = X+1 : 72X - \(\sqrt{\frac{5x^5-16277165}{20}}\)

Sau đó ấn CALC 20 = = = .... ( ấn liên tiếp phím = tìm các giá trị \(72x-\sqrt{\frac{5x^5-16277165}{20}}\)nguyên dương, đến khi \(72x-\sqrt{\frac{5x^5-16277165}{20}}\)âm thì dừng)

=> Các cặp số (x;y) thỏa mãn đề bài là (29;11)

5 tháng 8 2017

Hỏi 5 câu luôn à

26 tháng 10 2016

Mình viết quy trình bấm phím luôn nhé :

  • Quy trình tính Un\(D=D+1:A=\sqrt[3]{B.C^2+2010}:C=B:B=A:D=D+1:A=\sqrt[3]{B^2.C+2011}:C=B:B=A\)

Bấm CALC , Máy hỏi D? -> 2

B? -> 2

C? -> 1

Bấm liên tiếp dấu "=" , D chính là trị số của Un cần tìm.

Từ đó tính được U10 = 22,063283 ; U15 = 25,562651 ; U21 = 29,008768 ; U27 = 31,791400

  • Quy trình bấm phím Sn :

\(D=D+1:A=\sqrt[3]{B.C^2+2010}:X=X+A:C=B:B=A:D=D+1:A=\sqrt[3]{B^2.C+2011}:X=X+A:C=B:B=A\)

Bấm CALC , nhập D = 2 , B = 2 , C = 1 , X = 0

Bấm liên tiếp dấu "=" . D chính là trị số của Sn cần tìm.

Được S10 = 141,181370 ; S15 = 262,375538 ; S21 = 428,820575 ; S27 = 613,330707

 

 

26 tháng 10 2016

Quy trình bấm phím Un : A chính là Un

Quy trình bấm phím Sn : X chính là Sn

Các giá trị D = 3 tức là U3 (số 3 thôi nhé) , D = 4 tức U4 ...

30 tháng 12 2023

Ta tính một vài giá trị đầu của Un:

\(U_1=3;U_2=7;U_3=15;U_4=35;U_5=83\)

Đặt \(U_{n+1}=aU_n+bU_{n-1}+c\) (*)

Khi đó thay lần lượt \(n=2,n=3,n=4\) vào (*), ta có:

\(\left\{{}\begin{matrix}15=7a+3b+c\\35=15a+7b+c\\83=35a+15b+c\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=1\\c=-2\end{matrix}\right.\)

Do đó \(U_{n+1}=2U_n+U_{n-1}-2\)

NV
6 tháng 1

\(U_n=\dfrac{\left(n^2-1\right)}{n\left(n+2\right)}U_{n-1}\Rightarrow n\left(n+2\right).U_n=\left(n-1\right)\left(n+1\right).U_{n-1}\)

Đặt \(n\left(n+2\right).U_n=V_n\Rightarrow V_{n-1}=\left(n-1\right)\left(n+2-1\right).U_{n-1}=\left(n-1\right).\left(n+1\right)U_{n-1}\)

\(\Rightarrow V_n=V_{n-1}\)

\(\Rightarrow V_n=V_{n-1}=V_{n-2}=...=V_1\)

Có \(V_1=1.\left(1+2\right).U_1=1\)

\(\Rightarrow V_n=1\)

\(\Rightarrow U_n=\dfrac{V_n}{n\left(n+2\right)}=\dfrac{1}{n\left(n+2\right)}\)

\(\Rightarrow A=\dfrac{1}{1.3}+\dfrac{1}{2.4}+\dfrac{1}{3.5}+...+\dfrac{1}{2015.2017}\)

\(=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{2015}-\dfrac{1}{2017}\right)\)

\(=\dfrac{1}{2}\left(1+\dfrac{1}{2}-\dfrac{1}{2016}-\dfrac{1}{2017}\right)\)

\(=...\)