câu 1:CMR các biểu thức sau luôn dương với mọi giá trị của biến
c)x2+y2-4x+2
d)x2-2xy+2y2+2y+5
Câu 2: CMR các biểu thức sau luôn âm với mọi giá trị của biểu thức
a) -x2+2x-7
b)-x2-3x-5
d)-x2+4xy-5y2-8y-18
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: ta có: \(A=x^2-3x+10\)
\(=x^2-2\cdot x\cdot\dfrac{3}{2}+\dfrac{9}{4}+\dfrac{31}{4}\)
\(=\left(x-\dfrac{3}{2}\right)^2+\dfrac{31}{4}>0\forall x\)
b: Ta có: \(B=x^2-5x+2021\)
\(=x^2-2\cdot x\cdot\dfrac{5}{2}+\dfrac{25}{4}+\dfrac{8015}{4}\)
\(=\left(x-\dfrac{5}{2}\right)^2+\dfrac{8015}{4}>0\forall x\)
Lời giải:
a. $-x^2-2x-8=-7-(x^2+2x+1)=-7-(x+1)^2$
Vì $(x+1)^2\geq 0$ với mọi $x\in\mathbb{R}$ nên
$-x^2-2x-8=-7-(x+1)^2\leq -7< 0$ với mọi $x\in\mathbb{R}$
Vậy biểu thức luôn nhận giá trị âm với mọi $x$
b.
$-x^2-5x-11=-11+2,5^2-(x^2+5x+2,5^2)< -11+3^2-(x+2,5)^2$
$=-2-(x+2,5)^2\leq -2< 0$ với mọi $x\in\mathbb{R}$ (đpcm)
c.
$-4x^2-4x-2=-1-(4x^2+4x+1)=-1-(2x+1)^2\leq -1< 0$ với mọi $x\in\mathbb{R}$ (đpcm)
d.
$-9x^2+6x-7=-6-(9x^2-6x+1)=-6-(3x-1)^2\leq -6< 0$ với mọi $x\in\mathbb{R}$ (đpcm)
\(E=x^2+6x+11\)
\(=x^2+6x+9+2\)
\(=\left(x+3\right)^2+2>0\forall x\)
\(F=x^2-x+1\)
\(=x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)
\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x\)
\(=\dfrac{3x\left(-x^2\right)}{3x}+\dfrac{2}{3x}-\dfrac{3x}{3x}=\dfrac{-3x^3+2-3x}{3x}\)
\(=\dfrac{-x^2+2-3x}{1}=-\left(x^2-2+3x\right)\)
vậy bt A luôn......
\(x^2-2xy+2y^2+2y+5=\left(x^2-2xy+y^2\right)+\left(y^2+2y+1\right)+4=\left(x-y\right)^2+\left(y+1\right)^2+4\)
Do \(\left\{{}\begin{matrix}\left(x-y\right)^2\ge0\\\left(y+1\right)^2\ge0\end{matrix}\right.\) ;\(\forall x;y\)
\(\Rightarrow\left(x-y\right)^2+\left(y+1\right)^2+4>0\) ; \(\forall x;y\)
B = \(x^2\) - 2\(xy\) + 2y\(^2\) + 2\(x\) - 10y + 17
B = (\(x^2\) - 2\(xy\) + y2) + 2(\(x-y\)) + 1 + (y2 - 8y + 16)
B = (\(x-y\))2 + 2(\(x-y\)) + 1 + (y - 4)2
B = (\(x-y\) + 1)2 + (y - 4)2
(\(x-y+1\))2 ≥ 0 ∀ \(x;y\); (y - 4)2 ≥ 0
B ≥ 0
Kết luận biểu thức không âm. Chứ không phải là biểu thức luôn dương em nhé. Vì dương thì biểu thức phải > 0 ∀ \(x;y\). Mà số 0 không phải là số dương.
Câu 1:
\(d,x^2-2xy+2y^2+2y+5\)
\(=\left(x^2-2xy+y^2\right)+\left(y^2+2y+1\right)+4\)
\(=\left(x-y\right)^2+\left(x+1\right)^2+4\)
Với mọi giá trị của x;y ta có:
\(\left(x-y\right)^2\ge0;\left(x+1\right)^2\ge0\Rightarrow\left(x-y\right)^2+\left(x+1\right)^2+4>0\)Vậy:.....
Câu 2:
\(a.-x^2+2x-7\)
\(=-\left(x^2-2x+1\right)-6\)
\(=-\left(x-1\right)^2-6\)
Với mọi giá trị của x ta có:
\(\left(x-1\right)^2\ge0\Rightarrow-\left(x-1\right)^2\le0\Rightarrow-\left(x-1\right)^2-6< 0\)Vậy:......
b, \(-x^2-3x-5\)
\(=-\left(x^2+3x+\dfrac{9}{4}\right)-\dfrac{11}{4}\)
\(=-\left(x+\dfrac{3}{2}\right)^2-\dfrac{11}{4}\)
Với mọi giá trị của x ta có:
\(\left(x+\dfrac{3}{2}\right)^2\ge0\Rightarrow-\left(x+\dfrac{3}{2}\right)^2\le0\)
\(\Rightarrow-\left(x+\dfrac{3}{2}\right)^2-\dfrac{11}{4}< 0\)
Vậy:.....
d, \(-x^2+4xy-5y^2-8y-18\)
\(=-\left(x^2-4xy+4y\right)-\left(y^2+8y+16\right)-2\)
=\(-\left(x+2y\right)^2-\left(y+4\right)^2-2\)
Với mọi giá trị của x,y ta có:
\(-\left(x+2y\right)^2\le0;-\left(y+4\right)^2\le0\)
\(\Rightarrow-\left(x+2y\right)^2-\left(y+4\right)^2-2< 0\)
Vậy :.....
Câu 1:
c) \(x^2+y^2-4x+2\)
\(=x^2-4x+4+y^2-2\)
\(=\left(x-2\right)^2+y^2-2\)
>> đề sai. Vì sao?
ta thử đặt x = 2 vào đề thấy ngay bt = -1, hay ta dễ dàng nhận thấy sau khi phân tích.
d) \(x^2-2xy+2y^2+2y+5\)
\(=x^2-2xy+y^2+y^2+2y+1+4\)
\(=\left(x-y\right)^2+\left(y+1\right)^2+1>0\)
Vậy biểu thức trên luôn dương với mọi gt của biến.