K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 7 2017

Câu 1:

\(d,x^2-2xy+2y^2+2y+5\)

\(=\left(x^2-2xy+y^2\right)+\left(y^2+2y+1\right)+4\)

\(=\left(x-y\right)^2+\left(x+1\right)^2+4\)

Với mọi giá trị của x;y ta có:

\(\left(x-y\right)^2\ge0;\left(x+1\right)^2\ge0\Rightarrow\left(x-y\right)^2+\left(x+1\right)^2+4>0\)Vậy:.....

Câu 2:

\(a.-x^2+2x-7\)

\(=-\left(x^2-2x+1\right)-6\)

\(=-\left(x-1\right)^2-6\)

Với mọi giá trị của x ta có:

\(\left(x-1\right)^2\ge0\Rightarrow-\left(x-1\right)^2\le0\Rightarrow-\left(x-1\right)^2-6< 0\)Vậy:......

b, \(-x^2-3x-5\)

\(=-\left(x^2+3x+\dfrac{9}{4}\right)-\dfrac{11}{4}\)

\(=-\left(x+\dfrac{3}{2}\right)^2-\dfrac{11}{4}\)

Với mọi giá trị của x ta có:

\(\left(x+\dfrac{3}{2}\right)^2\ge0\Rightarrow-\left(x+\dfrac{3}{2}\right)^2\le0\)

\(\Rightarrow-\left(x+\dfrac{3}{2}\right)^2-\dfrac{11}{4}< 0\)

Vậy:.....

d, \(-x^2+4xy-5y^2-8y-18\)

\(=-\left(x^2-4xy+4y\right)-\left(y^2+8y+16\right)-2\)

=\(-\left(x+2y\right)^2-\left(y+4\right)^2-2\)

Với mọi giá trị của x,y ta có:

\(-\left(x+2y\right)^2\le0;-\left(y+4\right)^2\le0\)

\(\Rightarrow-\left(x+2y\right)^2-\left(y+4\right)^2-2< 0\)

Vậy :.....

19 tháng 7 2017

Câu 1:

c) \(x^2+y^2-4x+2\)

\(=x^2-4x+4+y^2-2\)

\(=\left(x-2\right)^2+y^2-2\)

>> đề sai. Vì sao?

ta thử đặt x = 2 vào đề thấy ngay bt = -1, hay ta dễ dàng nhận thấy sau khi phân tích.

d) \(x^2-2xy+2y^2+2y+5\)

\(=x^2-2xy+y^2+y^2+2y+1+4\)

\(=\left(x-y\right)^2+\left(y+1\right)^2+1>0\)

Vậy biểu thức trên luôn dương với mọi gt của biến.

a: ta có: \(A=x^2-3x+10\)

\(=x^2-2\cdot x\cdot\dfrac{3}{2}+\dfrac{9}{4}+\dfrac{31}{4}\)

\(=\left(x-\dfrac{3}{2}\right)^2+\dfrac{31}{4}>0\forall x\)

b: Ta có: \(B=x^2-5x+2021\)

\(=x^2-2\cdot x\cdot\dfrac{5}{2}+\dfrac{25}{4}+\dfrac{8015}{4}\)

\(=\left(x-\dfrac{5}{2}\right)^2+\dfrac{8015}{4}>0\forall x\)

\(E=x^2+6x+11\)

\(=x^2+6x+9+2\)

\(=\left(x+3\right)^2+2>0\forall x\)

\(F=x^2-x+1\)

\(=x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)

\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x\)

20 tháng 9 2021

Cho em hỏi là câu G là gì ạ?

 

Bài 2: CMR các biểu thức sau luôn dương vs mọi giá trị của biếnx2 - 8x +19                                              c) 4x2+ 4x+ 3x2+ y2- 4x+2                                            d) x2- 2xy+2y2+2y+5x2 + 4y2 – 2xy – 6y- 10( x- y) + 32Bài 3:CMR các biểu thức sau luôn âm vs mọi giá trị của bi- x2+ 2x - 7                                              c) -x2 - 6x - 10- x2 - 3x - 5                                               d) -x2+ 4xy - 5y2- 8y...
Đọc tiếp

Bài 2: CMR các biểu thức sau luôn dương vs mọi giá trị của biến

  1. x2 - 8x +19                                              c) 4x2+ 4x+ 3

  2. x2+ y2- 4x+2                                            d) x2- 2xy+2y2+2y+5

  3. x2 + 4y2 – 2xy – 6y- 10( x- y) + 32

Bài 3:CMR các biểu thức sau luôn âm vs mọi giá trị của bi

  1. - x2+ 2x - 7                                              c) -x2 - 6x - 10

  2. - x2 - 3x - 5                                               d) -x2+ 4xy - 5y2- 8y -18

  3. –x2 + 2xy- 4y2 + 2x + 10y - 8

Bài 4: a) Cho ba số x, y, z thỏa mãn: x + y + z = 0 và x2 + y2 + z2 = a2.  Tính x4 + y4 + z4

b)Cho x, y thỏa mãn : x + y = a ; x2 + y2 = b và x3 + y3 = c. Chứng minh rằng : a3 + 2c = 3ab

c) Cho a + b + c + d = 0.Chứng minh rằng a3 + b3 + c3 + d3 = 3( c +d)( ab – cd)

 

1
30 tháng 9 2018

\(A=x^2-8x+19\)

\(=x^2-8x+16+3\)

\(=\left(x-4\right)^2+3\)

Nhận thấy:  \(\left(x-4\right)^2\ge0\)  ;  \(\forall x\)

=>  \(\left(x-4\right)^2+3>0\)

hay A luôn dương với mọi giá trị của x

Bài 3: 

a) Ta có: \(A=25x^2-20x+7\)

\(=\left(5x\right)^2-2\cdot5x\cdot2+4+3\)

\(=\left(5x-2\right)^2+3>0\forall x\)(đpcm)

d) Ta có: \(D=x^2-2x+2\)

\(=x^2-2x+1+1\)

\(=\left(x-1\right)^2+1>0\forall x\)(đpcm)

Bài 1: 

a) Ta có: \(A=x^2-2x+5\)

\(=x^2-2x+1+4\)

\(=\left(x-1\right)^2+4\ge4\forall x\)

Dấu '=' xảy ra khi x=1

b) Ta có: \(B=x^2-x+1\)

\(=x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)

\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)

28 tháng 12 2021

28 tháng 12 2021

\(=\dfrac{3x\left(-x^2\right)}{3x}+\dfrac{2}{3x}-\dfrac{3x}{3x}=\dfrac{-3x^3+2-3x}{3x}\)

\(=\dfrac{-x^2+2-3x}{1}=-\left(x^2-2+3x\right)\)

vậy bt A luôn......

NV
1 tháng 11 2021

\(x^2-2xy+2y^2+2y+5=\left(x^2-2xy+y^2\right)+\left(y^2+2y+1\right)+4=\left(x-y\right)^2+\left(y+1\right)^2+4\)

Do \(\left\{{}\begin{matrix}\left(x-y\right)^2\ge0\\\left(y+1\right)^2\ge0\end{matrix}\right.\) ;\(\forall x;y\)

\(\Rightarrow\left(x-y\right)^2+\left(y+1\right)^2+4>0\) ; \(\forall x;y\)

26 tháng 7 2023

ko biết