K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 7 2017

a, \(\dfrac{1998}{1999}\) < \(\dfrac{1999}{2000}\)

b, \(\dfrac{47}{15}>\dfrac{29}{35}\)

c, \(\dfrac{12}{25}< \) \(\dfrac{25}{49}\)

5 tháng 8 2023

\(a,\dfrac{-15}{17}=-1+\dfrac{2}{17}\\ -\dfrac{19}{21}=-1+\dfrac{2}{21}\\ Vì:\dfrac{2}{17}>\dfrac{2}{21}\Rightarrow-1+\dfrac{2}{17}>-1+\dfrac{2}{21}\Rightarrow-\dfrac{15}{17}>-\dfrac{19}{21}\\ b,-\dfrac{24}{35}=-1+\dfrac{11}{35};-\dfrac{19}{30}=-1+\dfrac{11}{30}\\ Vì:\dfrac{11}{35}< \dfrac{11}{30}\Rightarrow-1+\dfrac{11}{35}< -1+\dfrac{11}{30}\\ \Rightarrow-\dfrac{24}{35}< -\dfrac{19}{30}\)

21 tháng 7 2023

a) Ta có \(\dfrac{23}{27}>\dfrac{23}{29};\dfrac{23}{29}>\dfrac{22}{29}\)

Vậy \(\dfrac{23}{27}>\dfrac{22}{29}\)

b) Ta có \(\dfrac{15}{25}=1-\dfrac{2}{5}\)

\(\dfrac{25}{49}=1-\dfrac{24}{49}\)

Vì \(\dfrac{2}{5}=\dfrac{24}{60}< \dfrac{24}{49}\)

Vậy \(\dfrac{15}{25}>\dfrac{25}{49}\)

21 tháng 7 2023

23/27 lớn hơn 22/29

15/25 lớn hơn 25/49

 

18 tháng 3 2017

Bài 1:

a) Ta có: \(13A=\dfrac{13^{16}+13}{13^{16}+1}=1+\dfrac{12}{13^{16}+1}\)

\(13B=\dfrac{13^{17}+13}{13^{17}+1}=1+\dfrac{12}{13^{17}+1}\)

\(\dfrac{12}{13^{16}+1}>\dfrac{12}{13^{17}+1}\Rightarrow1+\dfrac{12}{13^{16}+1}>1+\dfrac{12}{13^{17}+1}\)

\(\Rightarrow13A>13B\)

\(\Rightarrow A>B\)

Vậy A > B

b) Ta có: \(1999C=\dfrac{1999^{2000}+1999}{1999^{2000}+1}=1+\dfrac{1998}{1999^{2000}+1}\)

\(1999D=\dfrac{1999^{1999}+1999}{1999^{1999}+1}=1+\dfrac{1998}{1999^{1999}+1}\)

\(\dfrac{1998}{1999^{2000}+1}< \dfrac{1998}{1999^{1999}+1}\Rightarrow1+\dfrac{1998}{1999^{2000}+1}< 1+\dfrac{1999}{1999^{1999}+1}\)

\(\Rightarrow1999C< 1999D\)

\(\Rightarrow C< D\)

Vậy C < D

3 tháng 8 2023

So sánh

\(A=\dfrac{1999^{1999}+1}{1999^{1998}+1}\) ; \(B=\dfrac{1999^{2000}+1}{1999^{1999}+1}\)

Ta có: \(B=\dfrac{1999^{2000}+1}{1999^{1999}+1}>1\) ( vì tử > mẫu )

Do đó: \(B=\dfrac{1999^{2000}+1}{1999^{1999}+1}>\dfrac{1999^{2000}+1+1998}{1999^{1999}+1+1998}=\dfrac{1999^{2000}+1999}{1999^{1999}+1999}=\dfrac{1999.\left(1999^{1999}+1\right)}{1999.\left(1999^{1998}+1\right)}=\dfrac{1999^{1999}+1}{1999^{1998}+1}=A\)

Vậy B > A

Chúc bạn học tốt

5 tháng 8 2023

a) -23/49 = -1081/2303

   -25/47 = -1225/2303

=> -1081/2303 > -1225/2303 hay -23/49 > -25/47

b) -317/633 = -235531/470319

   -371/743 = -234843/470319

=> -235531/470319 < -234843/470319 hay -317/633 < -371/743

14 tháng 8 2019

a) +) Có \(A=\frac{13^{15}+1}{13^{16}+1}\)=> 13A = \(\frac{13\left(13^{15}+1\right)}{13^{16}+1}\)

= \(\frac{13^{16}+13}{13^{16}+1}=\frac{13^{16}+1+12}{13^{16}+1}=1+\frac{12}{13^{16}+1}\)(1)

+) Có \(B=\frac{13^{16}+1}{13^{17}+1}\)=> 13B =\(\frac{13\left(13^{16}+1\right)}{13^{17}+1}\)

=\(\frac{13^{17}+13}{13^{17}+1}=1+\frac{12}{13^{17}+1}\)(2)

+) Từ (1) và (2) => \(1+\frac{12}{13^{16}+1}>1+\frac{12}{13^{17}+1}\)

<=> 13A>13B <=> A> B

b) +) Có A=\(\frac{1999^{1999}+1}{1999^{1998}+1}\) => \(\frac{A}{1999}=\frac{1999^{1999}+1}{1999^{1999}+1999}=\frac{1999^{1999}+1999-1998}{1999^{1999}+1999}\)

=\(1-\frac{1998}{1999^{1999}+1999}\) (1)

+) Có B =\(\frac{1999^{2000}+1}{1999^{1999}+1}\)

=> \(\frac{B}{1999}=\frac{1999^{2000}+1}{1999^{2000}+1999}=1-\frac{1998}{1999^{2000}+1999}\)(2)

+) Từ (1) và (2) => \(1-\frac{1998}{1999^{1999}+1999}\)< \(1-\frac{1998}{1999^{2000}+1999}\)

<=> \(\frac{A}{1999}< \frac{B}{1999}\) <=> A< B

16 tháng 10 2022

c: \(\dfrac{A}{10}=\dfrac{100^{100}+1}{100^{100}+10}=1-\dfrac{9}{100^{100}+10}\)

\(\dfrac{B}{10}=\dfrac{100^{69}+1}{100^{69}+10}=1-\dfrac{9}{100^{69}+10}\)

Ta có:  100^100+10>100^69+10

=>-9/(100^100+10)<-9/(100^69+10)

=>A/10<B/10

=>A<B

18 tháng 1 2019

Ta có:

\(A-B=\dfrac{1999^{1999}+1}{1999^{1998}+1}-\dfrac{1999^{2000}+1}{1999^{1999}+1}\)

\(=\dfrac{\left(1999^{1999}+1\right)^2-\left(1999^{1998}+1\right)\left(1999^{2000}+1\right)}{\left(1999^{1998}+1\right)\left(1999^{1999}+1\right)}\)

\(=\dfrac{1999^{3998}+2\cdot1999^{1999}+1-\left(1999^{3998}+1999^{1998}+1999^{2000}+1\right)}{1999^{3997}+1999^{1998}+1999^{1999}+1}\)

\(=\dfrac{2\cdot1999^{1999}-1999^{1998}-1999^{2000}}{1999^{3997}+1999^{1998}+1999^{1999}+1}\)

\(2\cdot1999^{1999}-1999^{1998}-1999^{2000}=-\left[\left(1999^{999}\right)^2-2\cdot1999^{999}\cdot1999^{1000}+\left(1999^{1000}\right)^2\right]\)

\(=-\left(1999^{999}-1999^{1000}\right)^2< 0\)

Mà mẫu số > 0

\(\Rightarrow A-B< 0\Leftrightarrow A< B\)

28 tháng 1 2019

A=\(\dfrac{1999^{1999}+1999-1998}{1999^{1998}+1}\) B=\(\dfrac{1999^{2000}+1999-1998}{1999^{1999}+1}\)

A=1999-\(\dfrac{1998}{1999^{1998}+1}\) B=1999-\(\dfrac{1998}{1999^{1999}+1}\)

Vì 19991998+1<19991999+1 nên

\(\dfrac{1}{1999^{1998}+1}\)>\(\dfrac{1}{1999^{1999}+1}\) nên \(\dfrac{-1}{1999^{1998}+1}< \dfrac{-1}{1999^{1999}+1}\)

A=1999+\(\dfrac{-1}{1999^{1998}+1}< 1999+\dfrac{-1}{1999^{1999}+1}\)=B

A<B

14 tháng 3 2022

C. 3/15 và 9/25