1 .So sanh hai phan so
câu a,, \(\dfrac{1998}{1999}\)và\(\dfrac{1999}{2000}\)
câu b,, \(\dfrac{47}{15}\)và\(\dfrac{29}{35}\)
câu c,, \(\dfrac{12}{25}\)và\(\dfrac{25}{49}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\dfrac{-15}{17}=-1+\dfrac{2}{17}\\ -\dfrac{19}{21}=-1+\dfrac{2}{21}\\ Vì:\dfrac{2}{17}>\dfrac{2}{21}\Rightarrow-1+\dfrac{2}{17}>-1+\dfrac{2}{21}\Rightarrow-\dfrac{15}{17}>-\dfrac{19}{21}\\ b,-\dfrac{24}{35}=-1+\dfrac{11}{35};-\dfrac{19}{30}=-1+\dfrac{11}{30}\\ Vì:\dfrac{11}{35}< \dfrac{11}{30}\Rightarrow-1+\dfrac{11}{35}< -1+\dfrac{11}{30}\\ \Rightarrow-\dfrac{24}{35}< -\dfrac{19}{30}\)
a) Ta có \(\dfrac{23}{27}>\dfrac{23}{29};\dfrac{23}{29}>\dfrac{22}{29}\)
Vậy \(\dfrac{23}{27}>\dfrac{22}{29}\)
b) Ta có \(\dfrac{15}{25}=1-\dfrac{2}{5}\)
\(\dfrac{25}{49}=1-\dfrac{24}{49}\)
Vì \(\dfrac{2}{5}=\dfrac{24}{60}< \dfrac{24}{49}\)
Vậy \(\dfrac{15}{25}>\dfrac{25}{49}\)
Bài 1:
a) Ta có: \(13A=\dfrac{13^{16}+13}{13^{16}+1}=1+\dfrac{12}{13^{16}+1}\)
\(13B=\dfrac{13^{17}+13}{13^{17}+1}=1+\dfrac{12}{13^{17}+1}\)
Vì \(\dfrac{12}{13^{16}+1}>\dfrac{12}{13^{17}+1}\Rightarrow1+\dfrac{12}{13^{16}+1}>1+\dfrac{12}{13^{17}+1}\)
\(\Rightarrow13A>13B\)
\(\Rightarrow A>B\)
Vậy A > B
b) Ta có: \(1999C=\dfrac{1999^{2000}+1999}{1999^{2000}+1}=1+\dfrac{1998}{1999^{2000}+1}\)
\(1999D=\dfrac{1999^{1999}+1999}{1999^{1999}+1}=1+\dfrac{1998}{1999^{1999}+1}\)
\(\dfrac{1998}{1999^{2000}+1}< \dfrac{1998}{1999^{1999}+1}\Rightarrow1+\dfrac{1998}{1999^{2000}+1}< 1+\dfrac{1999}{1999^{1999}+1}\)
\(\Rightarrow1999C< 1999D\)
\(\Rightarrow C< D\)
Vậy C < D
So sánh
\(A=\dfrac{1999^{1999}+1}{1999^{1998}+1}\) ; \(B=\dfrac{1999^{2000}+1}{1999^{1999}+1}\)
Ta có: \(B=\dfrac{1999^{2000}+1}{1999^{1999}+1}>1\) ( vì tử > mẫu )
Do đó: \(B=\dfrac{1999^{2000}+1}{1999^{1999}+1}>\dfrac{1999^{2000}+1+1998}{1999^{1999}+1+1998}=\dfrac{1999^{2000}+1999}{1999^{1999}+1999}=\dfrac{1999.\left(1999^{1999}+1\right)}{1999.\left(1999^{1998}+1\right)}=\dfrac{1999^{1999}+1}{1999^{1998}+1}=A\)
Vậy B > A
Chúc bạn học tốt
a) -23/49 = -1081/2303
-25/47 = -1225/2303
=> -1081/2303 > -1225/2303 hay -23/49 > -25/47
b) -317/633 = -235531/470319
-371/743 = -234843/470319
=> -235531/470319 < -234843/470319 hay -317/633 < -371/743
a) +) Có \(A=\frac{13^{15}+1}{13^{16}+1}\)=> 13A = \(\frac{13\left(13^{15}+1\right)}{13^{16}+1}\)
= \(\frac{13^{16}+13}{13^{16}+1}=\frac{13^{16}+1+12}{13^{16}+1}=1+\frac{12}{13^{16}+1}\)(1)
+) Có \(B=\frac{13^{16}+1}{13^{17}+1}\)=> 13B =\(\frac{13\left(13^{16}+1\right)}{13^{17}+1}\)
=\(\frac{13^{17}+13}{13^{17}+1}=1+\frac{12}{13^{17}+1}\)(2)
+) Từ (1) và (2) => \(1+\frac{12}{13^{16}+1}>1+\frac{12}{13^{17}+1}\)
<=> 13A>13B <=> A> B
b) +) Có A=\(\frac{1999^{1999}+1}{1999^{1998}+1}\) => \(\frac{A}{1999}=\frac{1999^{1999}+1}{1999^{1999}+1999}=\frac{1999^{1999}+1999-1998}{1999^{1999}+1999}\)
=\(1-\frac{1998}{1999^{1999}+1999}\) (1)
+) Có B =\(\frac{1999^{2000}+1}{1999^{1999}+1}\)
=> \(\frac{B}{1999}=\frac{1999^{2000}+1}{1999^{2000}+1999}=1-\frac{1998}{1999^{2000}+1999}\)(2)
+) Từ (1) và (2) => \(1-\frac{1998}{1999^{1999}+1999}\)< \(1-\frac{1998}{1999^{2000}+1999}\)
<=> \(\frac{A}{1999}< \frac{B}{1999}\) <=> A< B
c: \(\dfrac{A}{10}=\dfrac{100^{100}+1}{100^{100}+10}=1-\dfrac{9}{100^{100}+10}\)
\(\dfrac{B}{10}=\dfrac{100^{69}+1}{100^{69}+10}=1-\dfrac{9}{100^{69}+10}\)
Ta có: 100^100+10>100^69+10
=>-9/(100^100+10)<-9/(100^69+10)
=>A/10<B/10
=>A<B
Ta có:
\(A-B=\dfrac{1999^{1999}+1}{1999^{1998}+1}-\dfrac{1999^{2000}+1}{1999^{1999}+1}\)
\(=\dfrac{\left(1999^{1999}+1\right)^2-\left(1999^{1998}+1\right)\left(1999^{2000}+1\right)}{\left(1999^{1998}+1\right)\left(1999^{1999}+1\right)}\)
\(=\dfrac{1999^{3998}+2\cdot1999^{1999}+1-\left(1999^{3998}+1999^{1998}+1999^{2000}+1\right)}{1999^{3997}+1999^{1998}+1999^{1999}+1}\)
\(=\dfrac{2\cdot1999^{1999}-1999^{1998}-1999^{2000}}{1999^{3997}+1999^{1998}+1999^{1999}+1}\)
Mà \(2\cdot1999^{1999}-1999^{1998}-1999^{2000}=-\left[\left(1999^{999}\right)^2-2\cdot1999^{999}\cdot1999^{1000}+\left(1999^{1000}\right)^2\right]\)
\(=-\left(1999^{999}-1999^{1000}\right)^2< 0\)
Mà mẫu số > 0
\(\Rightarrow A-B< 0\Leftrightarrow A< B\)
A=\(\dfrac{1999^{1999}+1999-1998}{1999^{1998}+1}\) B=\(\dfrac{1999^{2000}+1999-1998}{1999^{1999}+1}\)
A=1999-\(\dfrac{1998}{1999^{1998}+1}\) B=1999-\(\dfrac{1998}{1999^{1999}+1}\)
Vì 19991998+1<19991999+1 nên
\(\dfrac{1}{1999^{1998}+1}\)>\(\dfrac{1}{1999^{1999}+1}\) nên \(\dfrac{-1}{1999^{1998}+1}< \dfrac{-1}{1999^{1999}+1}\)
A=1999+\(\dfrac{-1}{1999^{1998}+1}< 1999+\dfrac{-1}{1999^{1999}+1}\)=B
A<B
a, \(\dfrac{1998}{1999}\) < \(\dfrac{1999}{2000}\)
b, \(\dfrac{47}{15}>\dfrac{29}{35}\)
c, \(\dfrac{12}{25}< \) \(\dfrac{25}{49}\)