Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Có: \(\frac{100^{101}+1}{100^{100}+1}>1\Rightarrow\frac{100^{101}+1}{100^{100}+1}>\frac{100^{101}+\left(1+99\right)}{100^{100}+\left(1+99\right)}\)
\(\Rightarrow B>\frac{100^{101}+100}{100^{100}+100}\\ \Rightarrow B>\frac{100\left(100^{100}+1\right)}{100\left(100^{99}+1\right)}\\ \Rightarrow B>\frac{100^{100}+1}{100^{99}+1}=A\\ \Leftrightarrow A< B\)
Vậy A < B
b. Có: \(\frac{13^{16}+1}{13^{17}+1}< 0\Rightarrow\frac{13^{16}+1}{13^{17}+1}< \frac{13^{16}+\left(1+12\right)}{13^{17}+\left(1+12\right)}\)
\(\Rightarrow B< \frac{13^{16}+13}{13^{17}+13}\\ \Rightarrow B< \frac{13\left(13^{15}+1\right)}{13\left(13^{16}+1\right)}\\ \Rightarrow B< \frac{13^{15}+1}{13^{16}+1}=A\\ \Leftrightarrow A>B\)
Vậy A > B
c. Có: \(\frac{1999^{2000}+1}{1999^{1999}+1}>1\Rightarrow\frac{1999^{2000}+1}{1999^{1999}+1}>\frac{1999^{2000}+\left(1+1998\right)}{1999^{1999}+\left(1+1998\right)}\)
\(\Rightarrow B>\frac{1999^{2000}+1999}{1999^{1999}+1999}\\ \Rightarrow B>\frac{1999\left(1999^{1999}+1\right)}{1999\left(1999^{1998}+1\right)}\\ \Rightarrow B>\frac{1999^{1999}+1}{1999^{1998}+1}=A\\ \Leftrightarrow A< B\)
Vậy A < B
So sánh
\(A=\dfrac{1999^{1999}+1}{1999^{1998}+1}\) ; \(B=\dfrac{1999^{2000}+1}{1999^{1999}+1}\)
Ta có: \(B=\dfrac{1999^{2000}+1}{1999^{1999}+1}>1\) ( vì tử > mẫu )
Do đó: \(B=\dfrac{1999^{2000}+1}{1999^{1999}+1}>\dfrac{1999^{2000}+1+1998}{1999^{1999}+1+1998}=\dfrac{1999^{2000}+1999}{1999^{1999}+1999}=\dfrac{1999.\left(1999^{1999}+1\right)}{1999.\left(1999^{1998}+1\right)}=\dfrac{1999^{1999}+1}{1999^{1998}+1}=A\)
Vậy B > A
Chúc bạn học tốt
Ta có:
\(A-B=\dfrac{1999^{1999}+1}{1999^{1998}+1}-\dfrac{1999^{2000}+1}{1999^{1999}+1}\)
\(=\dfrac{\left(1999^{1999}+1\right)^2-\left(1999^{1998}+1\right)\left(1999^{2000}+1\right)}{\left(1999^{1998}+1\right)\left(1999^{1999}+1\right)}\)
\(=\dfrac{1999^{3998}+2\cdot1999^{1999}+1-\left(1999^{3998}+1999^{1998}+1999^{2000}+1\right)}{1999^{3997}+1999^{1998}+1999^{1999}+1}\)
\(=\dfrac{2\cdot1999^{1999}-1999^{1998}-1999^{2000}}{1999^{3997}+1999^{1998}+1999^{1999}+1}\)
Mà \(2\cdot1999^{1999}-1999^{1998}-1999^{2000}=-\left[\left(1999^{999}\right)^2-2\cdot1999^{999}\cdot1999^{1000}+\left(1999^{1000}\right)^2\right]\)
\(=-\left(1999^{999}-1999^{1000}\right)^2< 0\)
Mà mẫu số > 0
\(\Rightarrow A-B< 0\Leftrightarrow A< B\)
A=\(\dfrac{1999^{1999}+1999-1998}{1999^{1998}+1}\) B=\(\dfrac{1999^{2000}+1999-1998}{1999^{1999}+1}\)
A=1999-\(\dfrac{1998}{1999^{1998}+1}\) B=1999-\(\dfrac{1998}{1999^{1999}+1}\)
Vì 19991998+1<19991999+1 nên
\(\dfrac{1}{1999^{1998}+1}\)>\(\dfrac{1}{1999^{1999}+1}\) nên \(\dfrac{-1}{1999^{1998}+1}< \dfrac{-1}{1999^{1999}+1}\)
A=1999+\(\dfrac{-1}{1999^{1998}+1}< 1999+\dfrac{-1}{1999^{1999}+1}\)=B
A<B
2:
\(B=\left(\dfrac{1}{2^2}-1\right)\left(\dfrac{1}{3^2}-1\right)\cdot...\cdot\left(\dfrac{1}{100^2}-1\right)\)
\(=\left(\dfrac{1}{2}-1\right)\left(\dfrac{1}{2}+1\right)\left(\dfrac{1}{3}-1\right)\left(\dfrac{1}{3}+1\right)\cdot...\cdot\left(\dfrac{1}{100}-1\right)\left(\dfrac{1}{100}+1\right)\)
\(=\left(\dfrac{1}{2}-1\right)\left(\dfrac{1}{3}-1\right)\cdot...\cdot\left(\dfrac{1}{100}-1\right)\left(\dfrac{1}{2}+1\right)\left(\dfrac{1}{3}+1\right)\cdot...\cdot\left(\dfrac{1}{100}+1\right)\)
\(=\dfrac{-1}{2}\cdot\dfrac{-2}{3}\cdot...\cdot\dfrac{-99}{100}\cdot\dfrac{3}{2}\cdot\dfrac{4}{3}\cdot...\cdot\dfrac{101}{100}\)
\(=-\dfrac{1}{100}\cdot\dfrac{101}{2}=\dfrac{-101}{200}< -\dfrac{100}{200}=-\dfrac{1}{2}\)
So sánh A=\(\dfrac{1}{100}+\dfrac{1}{101}+\dfrac{1}{102}+..+\dfrac{1}{2021}\)và B=20. So sánh A và B
c: \(100C=\dfrac{100^{100}+100}{100^{100}+1}=1+\dfrac{99}{100^{100}+1}\)
\(100D=\dfrac{100^{101}+100}{100^{101}+1}=1+\dfrac{99}{100^{101}+1}\)
100^100+1<100^101+1
=>\(\dfrac{99}{100^{100}+1}>\dfrac{99}{100^{101}+1}\)
=>100C>100D
=>C>D
b: \(2020E=\dfrac{2020^{2022}+2020}{2020^{2022}+1}=1+\dfrac{2019}{2020^{2022}+1}\)
\(2020F=\dfrac{2020^{2021}+2020}{2020^{2021}+1}=1+\dfrac{2019}{2020^{2021}+1}\)
2020^2022+1>2020^2021+1(Do 2022>2021)
=>\(\dfrac{2019}{2020^{2022}+1}< \dfrac{2019}{2020^{2021}+1}\)
=>2020E<2020F
=>E<F
a) \(\dfrac{12}{47}\) và \(\dfrac{11}{53}\)
Ta có: \(\dfrac{11}{47}>\dfrac{11}{53}\) mà \(\dfrac{12}{47}>\dfrac{11}{47}\)
\(\Rightarrow\dfrac{12}{47}>\dfrac{11}{53}\)
a) Ta có :\(\dfrac{12}{47}>\dfrac{12}{48}=\dfrac{1}{4}=\dfrac{11}{44}>\dfrac{11}{53}\)
\(\Rightarrow\dfrac{12}{47}>\dfrac{11}{53}\)
b) Ta có : \(\dfrac{456}{461}=1-\dfrac{5}{461}\)
\(\dfrac{123}{128}=1-\dfrac{5}{128}\)
Vì \(\dfrac{5}{461}< \dfrac{5}{128}\Rightarrow1-\dfrac{5}{461}>1-\dfrac{5}{128}\)
\(\Rightarrow\dfrac{456}{461}>\dfrac{123}{128}\)
c) Ta có :\(\dfrac{12}{47}>\dfrac{12}{48}=\dfrac{1}{4}=\dfrac{19}{76}>\dfrac{19}{77}\)
=> \(\dfrac{12}{47}>\dfrac{19}{77}\)
d) Ta có : \(13A=13.\dfrac{13^{15}+1}{13^{16}+1}=\dfrac{13^{16}+13}{13^{16}+1}=\dfrac{13^{16}+1+12}{13^{16}+1}=1+\dfrac{12}{13^{16}+1}\)
\(13B=13.\dfrac{13^{16}+1}{13^{17}+1}=\dfrac{13^{17}+13}{13^{17}+1}=\dfrac{13^{17}+1+12}{13^{17}+1}=1+\dfrac{12}{13^{17}+1}\)
Ta thấy : \(\dfrac{12}{13^{16}+1}>\dfrac{12}{13^{17}+1}\Rightarrow1+\dfrac{12}{13^{16}+1}>1+\dfrac{12}{13^{17}+1}\Rightarrow\dfrac{13^{15}+1}{13^{16}+1}>\dfrac{13^{16}+1}{13^{17}+1}\)
Ta có: \(3\cdot A=1+\dfrac{1}{3^1}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{99}}\)
\(A=\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{100}}\)
Do đó:
\(3\cdot A-A=1+\dfrac{1}{3^1}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{100}}-\dfrac{1}{3}-\dfrac{1}{3^2}-...-\dfrac{1}{3^{100}}\)
hay \(2\cdot A=1-\dfrac{1}{3^{100}}\)
\(\Leftrightarrow A=\left(1-\dfrac{1}{3^{100}}\right):2\)
\(\Leftrightarrow A=\left(1-\dfrac{1}{3^{100}}\right)\cdot\dfrac{1}{2}\)
\(\Leftrightarrow A=\dfrac{1}{2}-\dfrac{1}{2\cdot3^{100}}< \dfrac{1}{2}\)
hay A<B
a) +) Có \(A=\frac{13^{15}+1}{13^{16}+1}\)=> 13A = \(\frac{13\left(13^{15}+1\right)}{13^{16}+1}\)
= \(\frac{13^{16}+13}{13^{16}+1}=\frac{13^{16}+1+12}{13^{16}+1}=1+\frac{12}{13^{16}+1}\)(1)
+) Có \(B=\frac{13^{16}+1}{13^{17}+1}\)=> 13B =\(\frac{13\left(13^{16}+1\right)}{13^{17}+1}\)
=\(\frac{13^{17}+13}{13^{17}+1}=1+\frac{12}{13^{17}+1}\)(2)
+) Từ (1) và (2) => \(1+\frac{12}{13^{16}+1}>1+\frac{12}{13^{17}+1}\)
<=> 13A>13B <=> A> B
b) +) Có A=\(\frac{1999^{1999}+1}{1999^{1998}+1}\) => \(\frac{A}{1999}=\frac{1999^{1999}+1}{1999^{1999}+1999}=\frac{1999^{1999}+1999-1998}{1999^{1999}+1999}\)
=\(1-\frac{1998}{1999^{1999}+1999}\) (1)
+) Có B =\(\frac{1999^{2000}+1}{1999^{1999}+1}\)
=> \(\frac{B}{1999}=\frac{1999^{2000}+1}{1999^{2000}+1999}=1-\frac{1998}{1999^{2000}+1999}\)(2)
+) Từ (1) và (2) => \(1-\frac{1998}{1999^{1999}+1999}\)< \(1-\frac{1998}{1999^{2000}+1999}\)
<=> \(\frac{A}{1999}< \frac{B}{1999}\) <=> A< B
c: \(\dfrac{A}{10}=\dfrac{100^{100}+1}{100^{100}+10}=1-\dfrac{9}{100^{100}+10}\)
\(\dfrac{B}{10}=\dfrac{100^{69}+1}{100^{69}+10}=1-\dfrac{9}{100^{69}+10}\)
Ta có: 100^100+10>100^69+10
=>-9/(100^100+10)<-9/(100^69+10)
=>A/10<B/10
=>A<B