Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\Leftrightarrow-\dfrac{23}{5}\cdot\dfrac{50}{23}< x< \dfrac{-13}{5}:\dfrac{21}{15}=\dfrac{-13}{5}\cdot\dfrac{5}{7}=\dfrac{-13}{7}\)
=>-10<x<-13/7
hay \(x\in\left\{-9;-8;-7;-6;-5;-4;-3;-2\right\}\)
b: \(\Leftrightarrow-\dfrac{13}{3}\cdot\dfrac{1}{3}< x< \dfrac{-2}{3}\cdot\dfrac{4-3-9}{12}\)
\(\Leftrightarrow-\dfrac{13}{9}< x< \dfrac{4}{9}\)
mà x là số nguyên
nên \(x\in\left\{-1;0\right\}\)
\(\dfrac{1}{5^2}+\dfrac{1}{6^2}+\dfrac{1}{7^2}+........+\dfrac{1}{100^2}\)
Ta có :
\(\dfrac{1}{5^2}< \dfrac{1}{4.5}\)
\(\dfrac{1}{6^2}< \dfrac{1}{5.6}\)
...................
\(\dfrac{1}{100^2}< \dfrac{1}{99.100}\)
\(\Leftrightarrow\dfrac{1}{5^2}+\dfrac{1}{6^2}+....+\dfrac{1}{100^2}< \dfrac{1}{4.5}+\dfrac{1}{5.6}+.......+\dfrac{1}{99.100}=\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+......+\dfrac{1}{99}-\dfrac{1}{100}=\dfrac{1}{4}-\dfrac{1}{100}=\dfrac{6}{25}\)
Mà \(\dfrac{1}{6}< \dfrac{5}{26}< \dfrac{1}{4}\)
Mà \(\dfrac{1}{5^2}+\dfrac{1}{6^2}+.........+\dfrac{1}{100^2}< \dfrac{6}{25}\)
\(\Leftrightarrow\dfrac{1}{6}< \dfrac{1}{5^2}+\dfrac{1}{6^2}+.......+\dfrac{1}{100^2}< \dfrac{1}{4}\left(đpcm\right)\) \(\left(1\right)\)
a: 2x(x-1/7)=0
=>x(x-1/7)=0
=>x=0 hoặc x=1/7
b: \(\dfrac{3}{4}+\dfrac{1}{4}:x=\dfrac{2}{5}\)
\(\Leftrightarrow\dfrac{1}{4}:x=\dfrac{2}{5}-\dfrac{3}{4}=\dfrac{8}{20}-\dfrac{15}{20}=\dfrac{-7}{20}\)
nên \(x=\dfrac{-1}{4}:\dfrac{7}{20}=\dfrac{-20}{4\cdot7}=\dfrac{-5}{7}\)
c: \(\Leftrightarrow\dfrac{41}{9}:\dfrac{41}{18}-7< x< \left(3.2:3.2+\dfrac{45}{10}\cdot\dfrac{31}{45}\right):\left(-21.5\right)\)
\(\Leftrightarrow2-7< x< \dfrac{\left(1+3.1\right)}{-21.5}\)
\(\Leftrightarrow-5< x< \dfrac{-41}{215}\)
mà x là số nguyên
nên \(x\in\left\{-4;-3;-2;-1\right\}\)
a: Gọi số nguyên cần tìm là x
Theo đề, ta có: \(\dfrac{1}{3}+\left(\dfrac{2}{4}-1\dfrac{2}{5}\right)< x< 2\dfrac{1}{7}+\left(\dfrac{-2}{5}-\dfrac{1}{4}\right)\)
\(\Leftrightarrow\dfrac{1}{3}+\dfrac{1}{2}-\dfrac{7}{5}< x< \dfrac{15}{7}-\dfrac{2}{5}-\dfrac{1}{4}\)
\(\Leftrightarrow\dfrac{20}{60}+\dfrac{30}{60}-\dfrac{84}{60}< x< \dfrac{15\cdot20-2\cdot28-35}{140}\)
\(\Leftrightarrow-\dfrac{34}{60}< x< \dfrac{209}{140}\)
mà x là số nguyên
nên \(x\in\left\{0;1\right\}\)
b: Gọi số nguyên cần tìm là x
Theo đề, ta có: \(\dfrac{7}{3}+\dfrac{3}{4}-\dfrac{1}{5}>x>\dfrac{2}{3}-\dfrac{1}{4}+\dfrac{2}{7}\)
\(\Leftrightarrow\dfrac{7\cdot20+3\cdot15-12}{60}>x>\dfrac{56-21+2\cdot12}{84}\)
\(\Leftrightarrow\dfrac{173}{60}>x>\dfrac{59}{84}\)
mà x là số nguên
nên \(x\in\left\{2;1\right\}\)
b: \(\left|x-\dfrac{3}{5}\right|< \dfrac{1}{3}\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-\dfrac{3}{5}>-\dfrac{1}{3}\\x-\dfrac{3}{5}< \dfrac{1}{3}\end{matrix}\right.\Leftrightarrow\dfrac{4}{15}< x< \dfrac{14}{15}\)
c: \(\left|x+\dfrac{11}{2}\right|>-5.5\)
mà \(\left|x+\dfrac{11}{2}\right|\ge0\forall x\)
nên \(x\in R\)
Lời giải:
Ta có:
\(\frac{1}{13}; \frac{1}{14}; \frac{1}{15}<\frac{1}{12}\)
\(\Rightarrow \frac{1}{13}+\frac{1}{14}+\frac{1}{15}< \frac{3}{12}=\frac{1}{4}\)
\(\frac{1}{61}; \frac{1}{62};\frac{1}{63}< \frac{1}{60}\)
\(\Rightarrow \frac{1}{61}+\frac{1}{62}+\frac{1}{63}< \frac{3}{60}=\frac{1}{20}\)
Do đó:
\(A< \frac{1}{5}+\frac{1}{4}+\frac{1}{20}=\frac{9}{20}+\frac{1}{20}\)
\(\Leftrightarrow A< \frac{1}{2}\) (đpcm)
Đặt biểu thức bằng A:
\(\Rightarrow A=\dfrac{1}{5}\left(\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}\right)+\left(\dfrac{1}{61}+\dfrac{1}{62}+\dfrac{1}{63}\right)\)
Ta thấy: \(\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}< 3.\dfrac{1}{61}\)
\(\dfrac{1}{61}+\dfrac{1}{62}+\dfrac{1}{63}< 3.\dfrac{1}{61}\)
\(\Rightarrow A< \dfrac{1}{5}+\dfrac{3}{31}+\dfrac{3}{61}< \dfrac{1}{2}\left(đpcm\right)\)
T làm biếng lắm; làm C thôi
\(A=\dfrac{1}{2}.\dfrac{3}{4}.\dfrac{5}{6}...\dfrac{99}{100}\\ \Rightarrow A< \dfrac{2}{3}.\dfrac{4}{5}.\dfrac{6}{7}...\dfrac{100}{101}\\ \Rightarrow A^2< \left(\dfrac{1}{2}.\dfrac{3}{4}.\dfrac{5}{6}...\dfrac{99}{100}\right).\left(\dfrac{2}{3}.\dfrac{4}{5}.\dfrac{6}{7}...\dfrac{100}{101}\right)\\ =\dfrac{1}{2}.\dfrac{2}{3}.\dfrac{3}{4}.\dfrac{4}{5}...\dfrac{99}{100}.\dfrac{100}{101}\\ =\dfrac{1}{101}< \dfrac{1}{100}\\ \Rightarrow A< \dfrac{1}{10}\)
Làm tương tự ta được A > 1/15
câu a
\(A=\dfrac{1}{11}+\dfrac{1}{12}+...+\dfrac{1}{30}>\dfrac{20}{30}=\dfrac{2}{3}>\dfrac{1}{3}\)
\(A=\left(\dfrac{1}{11}+..+\dfrac{1}{15}\right)+\left(\dfrac{1}{16}+...+\dfrac{1}{30}\right)< 5.\dfrac{1}{10}+25.\dfrac{1}{15}=\dfrac{1}{2}+\dfrac{5}{3}=\dfrac{8}{6}=\dfrac{4}{3}< \dfrac{5}{2}\)