Chứng minh với x,y là 2 số không âm tùy ý, ta luôn có: \(3x^3+17y^3\ge18xy^2\)
Xài bđt Cauchy nha.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
The Silent Man: trước hết tìm ước của 18 là:...
thử ước đầu tiên là 3
Ta sẽ có: \(3\sqrt[3]{a.b.c}\) \(=18xy^2=3.6xy^2\), trong căn cần 63.x3.y6 để sau khi rút gọn có 18xy2
dễ thấy a=3x3 vì sau khi rút gọn x3 còn x
bây giờ cần 32.23.y6 = 9y3.8y3
9+8=17 nên tách 17y3 = 8y3 + 9y3
xong
1/ Đặt \(\hept{\begin{cases}\sqrt{x-2013}=a\\\sqrt{x-2014}=b\end{cases}}\)
Thì ta có:
\(\frac{\sqrt{x-2013}}{x+2}+\frac{\sqrt{x-2014}}{x}=\frac{a}{a^2+2015}+\frac{b}{b^2+2014}\)
\(\le\frac{a}{2a\sqrt{2015}}+\frac{b}{2b\sqrt{2014}}=\frac{1}{2\sqrt{2015}}+\frac{1}{2\sqrt{2014}}\)
2/ \(\frac{x}{2x+y+z}+\frac{y}{x+2y+z}+\frac{z}{x+y+2z}\)
\(\le\frac{1}{4}\left(\frac{x}{x+y}+\frac{x}{x+z}+\frac{y}{y+x}+\frac{y}{y+z}+\frac{z}{z+x}+\frac{z}{z+y}\right)\)
\(=\frac{3}{4}\)
Gọi 8 số nguyên dương tùy ý là \(a_1,a_2,a_3,....,a_8\)
với \(1\le a_1\le a_2\le a_3\le a_4\le......\le a_8\le20\)
Nhận thấy rằng với ba số nguyên dương a,b,c thỏa mãn \(a\ge b\ge c\) và \(b+c>a\) thì khi đó a,b,c là độ dài 3 cạnh tam giác.
Nếu trong các số \(a_1,a_2,a_3,a_4,.....a_8\) không chọn được 3 số nào là độ dài 3 cạnh của tam giác thì:
\(a_6\ge a_7+a_8\ge1+1=2\)
\(a_5\ge a_6+a_7=2+1=3\)
\(a_4\ge a_5+a_6=2+3=5\)
\(a_3\ge a_4+a_5=3+5=8\)
\(a_2\ge a_3+a_4=8+5=13\)
\(a_1\ge a_2+a_3=13+8=21\)(trái với giả thiết)
Vậy điều giả sử là sai.
=> điều cần chứng minh
vừa làm trên học24 xong mà ko đưa dc link thôi nhai lại vậy :v
Áp dụng BĐT AM-GM ta có:
\(\frac{a^3}{\sqrt{b^2+3}}+\frac{a^3}{\sqrt{b^2+3}}+\frac{b^2+3}{7\sqrt{7}}\)
\(\ge3\sqrt[3]{\frac{a^3}{\sqrt{b^2+3}}\cdot\frac{a^3}{\sqrt{b^2+3}}\cdot\frac{b^2+3}{7\sqrt{7}}}=\frac{3a^2}{\sqrt{7}}\)
Tương tự cho 2 BĐT còn lại ta cũng có:
\(\frac{b^3}{\sqrt{c^2+3}}+\frac{b^3}{\sqrt{c^2+3}}+\frac{c^2+3}{7\sqrt{7}}\ge\frac{3b^2}{\sqrt{7}};\frac{c^3}{\sqrt{a^2+3}}+\frac{c^3}{\sqrt{a^2+3}}+\frac{a^2+3}{7\sqrt{7}}\ge\frac{3c^2}{\sqrt{7}}\)
Cộng theo vế 3 BĐT trên ta có:
\(2P+\frac{a^2+b^2+c^2+9}{7\sqrt{7}}\ge\frac{3\left(a^2+b^2+c^2\right)}{\sqrt{7}}\)
\(\Rightarrow P\ge\frac{\frac{\frac{\left(a+b+c\right)^2}{3}+9}{7\sqrt{7}}-\frac{3\cdot\frac{\left(a+b+c\right)^2}{3}}{\sqrt{7}}}{2}\ge\frac{\frac{\sqrt{7}}{21}}{2}=\frac{\sqrt{7}}{42}\)
Xảy ra khi \(a=b=c=\frac{1}{3}\)
Có thiếu dấu . nào ko nhỉ :v, tự nhai lại nên vẫn thấy ngon :v
bài này
áp dụng cô si ta có
a³/b + ab ≥ 2a²
b³/c + bc ≥ 2b²
c³/a + ac ≥ 2c²
+ + + 3 cái lại
=> a³/b + b³/c + c³/a ≥ 2a² + 2b² + 2c² - ab - ac - bc
mặt khác ta có
ab + bc + ac ≤ a² + b² + c² (cái này chứng minh dễ dàng nhé)
thay vào
=> a³/b + b³/c + c³/a ≥ a² + b² + c² ≥ 1
=>minP = 1
dấu bằng xảy ra <=. a = b = c = 1/√3
( bài này sử dụng A + B ≥ 2C mà B ≤ C => A ≥ C)
k và kết bạn cho mình nha !!!
xét hiệu a3+b3+3abc=(a+b+c)(a2+b2+c2-ab-ac-bc)=(a+b+c)\(\frac{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}{2}\ge0\)
đẳng thức xảy ra khi a=b=c
Ta có: \(a^3+b^3+c^3-3abc=\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc\)
\(=\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc\)
\(=\left(a+b+c\right)^3-3.\left(a+b\right).c.\left(a+b+c\right)-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right).\left[\left(a+b+c\right)^2-3\left(a+b\right).c-3ab\right]\)
\(=\left(a+b+c\right).\left(a^2+b^2+c^2+2ab+2bc+2ca-3ac-3bc-3ab\right)\)
\(=\left(a+b+c\right).\left(a^2+b^2+c^2-ab-bc-ca\right)\)
\(=\frac{1}{2}.\left(a+b+c\right).\left(2a^2+2b^2+2c^2-2ab-2bc-2ca\right)\)
\(=\frac{1}{2}.\left(a+b+c\right).\left[\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)\right]\)
\(=\frac{1}{2}.\left(a+b+c\right).\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]\ge0\)( Vì a, b, c không âm )
\(\Rightarrow a^3+b^3+c^3\ge3abc\)( đpcm )
Lời giải:
Áp dụng BĐT Cauchy:
\(3x^3+17y^3=3x^3+8y^3+9y^3\geq 3\sqrt[3]{216x^3y^6}\)
\(\Leftrightarrow 3x^3+17y^3\geq 18xy^2\)(đpcm)
Dấu bằng xảy ra khi \(x=y=0\)