Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(a^2+ab+b^2=a^2+\dfrac{2ab}{2}+\left(\dfrac{b}{2}\right)^2+\dfrac{3b^2}{4}\)
\(=\left(a+\dfrac{b}{2}\right)^2+\dfrac{3b^2}{4}\ge0\forall a,b\)
b)\(a^4+b^4\ge a^3b+ab^3\)
\(\Leftrightarrow a^3\left(a-b\right)-b^3\left(a-b\right)\ge0\)
\(\Leftrightarrow\left(a^3-b^3\right)\left(a-b\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\forall a,b\)
Ta cần chứng minh : \(\frac{a_1+a_2+...+a_n}{n}\ge\sqrt[n]{a_1.a_2...a_n}\) với \(n\in N^{\text{*}}\)
Hiển nhiên bđt đúng với n = 2 , tức là \(\frac{a_1+a_2}{2}\ge\sqrt{a_1a_2}\) (1)
Giả sử bđt đúng với n = k , tức là \(\frac{a_1+a_2+...+a_k}{k}\ge\sqrt[k]{a_1.a_2...a_k}\) với \(k>2\)
Ta sẽ chứng minh bđt cũng đúng với mọi n = k + 1
Không mất tính tổng quát, đặt \(a_1\le a_2\le...\le a_k\le a_{k+1}\)
thì : \(a_{k+1}\ge\frac{a_1+a_2+...+a_k}{k}\) . Lại đặt \(\frac{a_1+a_2+...+a_k}{k}=x,x\ge0\)
\(\Rightarrow a_{k+1}=x+y,y\ge0\) và \(x^k=a_1.a_2...a_k\) (suy ra từ giả thiết quy nạp)
Ta có : \(\left(\frac{a_1+a_2+...+a_{k+1}}{k+1}\right)^{k+1}=\left(\frac{kx+x+y}{k+1}\right)^{k+1}=\left(\frac{x\left(k+1\right)+y}{k+1}\right)^{k+1}=\left(x+\frac{y}{k+1}\right)^{k+1}\)
\(\ge x^{k+1}+\left(k+1\right).\frac{y}{k+1}.x^k=x^{k+1}+y.x^k=x^k\left(x+y\right)\ge a_1.a_2...a_k.a_{k+1}\)
Suy ra \(\left(\frac{a_1+a_2+...+a_{k+1}}{k+1}\right)^{k+1}\ge\sqrt[k+1]{a_1.a_2...a_{k+1}}\)
Vậy bđt luôn đúng với mọi n > 2 (2)
Từ (1) và (2) suy ra đpcm.
\(f\left(x\right)=3x^2+\frac{8}{x}=3x^2+\frac{4}{x}+\frac{4}{x}\ge3\sqrt[3]{3x^2.\frac{4}{x}.\frac{4}{x}}=6\sqrt[3]{6}\)
Dấu \(=\)khi \(3x^2=\frac{4}{x}\Leftrightarrow x=\sqrt[3]{\frac{4}{3}}\).
Cách này đòi hỏi sự kiên nhẫn và kinh nghiệm.
Cần chứng minh:
\({\dfrac {4 \left( xy+zx+yz \right) \left( x+y+z \right) ^{7}}{ 243}}- \left( {x}^{3}+{y}^{3}+{z}^{3} \right) \left( {x}^{3}{y}^{3}+{ x}^{3}{z}^{3}+{y}^{3}{z}^{3} \right) \geqslant 0.\quad(1) \)
Đặt
\(\text{M}=4\,{z}^{7}+ \left( 757\,x+757\,y \right) {z}^{6}+84\, \left( x+y \right) ^{2}{z}^{5}+140\, \left( x+y \right) ^{3}{z}^{4}\\\quad\quad+ \left( 1598 \,{x}^{4}+4205\,{x}^{3}y+4971\,{x}^{2}{y}^{2}+4205\,x{y}^{3}+1598\,{y} ^{4} \right) {z}^{3}\\\quad \quad+84\, \left( x+y \right) ^{5}{z}^{2}+28\, \left( x +y \right) ^{6}z\geqslant 0 \)
Ta có:
\((1)\Leftrightarrow \dfrac{1}{243}xy\cdot M+{\dfrac { \left( x+y \right) \left( {x}^{2}+11\,xy+{y}^{2} \right) \left( 2\,x-y \right) ^{2} \left( x-2\,y \right) ^{2}xy}{243}}\\\quad\quad+{ \dfrac { \left( x+y \right) z \left( x+y+z \right) \left( {x}^{2}+2\,x y+11\,zx+{y}^{2}+11\,yz+{z}^{2} \right) \left( 2\,y-z+2\,x \right) ^{ 2} \left( y-2\,z+x \right) ^{2}}{243}}\geqslant 0. \)
Đẳng thức xảy ra khi $...$
Ta có: \(\overrightarrow {OA} = \overrightarrow {OG} + \overrightarrow {GA} \); \(\overrightarrow {OB} = \overrightarrow {OG} + \overrightarrow {GB} \); \(\overrightarrow {OC} = \overrightarrow {OG} + \overrightarrow {GC} \)
\(\begin{array}{l} \Rightarrow \overrightarrow {OB} + \overrightarrow {OA} + \overrightarrow {OC} = \overrightarrow {OG} + \overrightarrow {GA} + \overrightarrow {OG} + \overrightarrow {GB} + \overrightarrow {OG} + \overrightarrow {GC} \\ \Leftrightarrow \overrightarrow {OB} + \overrightarrow {OA} + \overrightarrow {OC} = 3\overrightarrow {OG} + \left( {\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} } \right)\end{array}\)
Do G là trọng tâm của tam giác ABC nên \(\overrightarrow {GB} + \overrightarrow {GA} + \overrightarrow {GC} = \overrightarrow 0 \)
\(\begin{array}{l} \Rightarrow \overrightarrow {OB} + \overrightarrow {OA} + \overrightarrow {OC} = 3\overrightarrow {OG} + \overrightarrow 0 \\ \Leftrightarrow \overrightarrow {OB} + \overrightarrow {OA} + \overrightarrow {OC} = 3\overrightarrow {OG} \end{array}\)
Lời giải:
Áp dụng BĐT Cauchy:
\(3x^3+17y^3=3x^3+8y^3+9y^3\geq 3\sqrt[3]{216x^3y^6}\)
\(\Leftrightarrow 3x^3+17y^3\geq 18xy^2\)(đpcm)
Dấu bằng xảy ra khi \(x=y=0\)