Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
The Silent Man: trước hết tìm ước của 18 là:...
thử ước đầu tiên là 3
Ta sẽ có: \(3\sqrt[3]{a.b.c}\) \(=18xy^2=3.6xy^2\), trong căn cần 63.x3.y6 để sau khi rút gọn có 18xy2
dễ thấy a=3x3 vì sau khi rút gọn x3 còn x
bây giờ cần 32.23.y6 = 9y3.8y3
9+8=17 nên tách 17y3 = 8y3 + 9y3
xong
1/ Đặt \(\hept{\begin{cases}\sqrt{x-2013}=a\\\sqrt{x-2014}=b\end{cases}}\)
Thì ta có:
\(\frac{\sqrt{x-2013}}{x+2}+\frac{\sqrt{x-2014}}{x}=\frac{a}{a^2+2015}+\frac{b}{b^2+2014}\)
\(\le\frac{a}{2a\sqrt{2015}}+\frac{b}{2b\sqrt{2014}}=\frac{1}{2\sqrt{2015}}+\frac{1}{2\sqrt{2014}}\)
2/ \(\frac{x}{2x+y+z}+\frac{y}{x+2y+z}+\frac{z}{x+y+2z}\)
\(\le\frac{1}{4}\left(\frac{x}{x+y}+\frac{x}{x+z}+\frac{y}{y+x}+\frac{y}{y+z}+\frac{z}{z+x}+\frac{z}{z+y}\right)\)
\(=\frac{3}{4}\)
xét hiệu a3+b3+3abc=(a+b+c)(a2+b2+c2-ab-ac-bc)=(a+b+c)\(\frac{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}{2}\ge0\)
đẳng thức xảy ra khi a=b=c
Ta có: \(a^3+b^3+c^3-3abc=\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc\)
\(=\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc\)
\(=\left(a+b+c\right)^3-3.\left(a+b\right).c.\left(a+b+c\right)-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right).\left[\left(a+b+c\right)^2-3\left(a+b\right).c-3ab\right]\)
\(=\left(a+b+c\right).\left(a^2+b^2+c^2+2ab+2bc+2ca-3ac-3bc-3ab\right)\)
\(=\left(a+b+c\right).\left(a^2+b^2+c^2-ab-bc-ca\right)\)
\(=\frac{1}{2}.\left(a+b+c\right).\left(2a^2+2b^2+2c^2-2ab-2bc-2ca\right)\)
\(=\frac{1}{2}.\left(a+b+c\right).\left[\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)\right]\)
\(=\frac{1}{2}.\left(a+b+c\right).\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]\ge0\)( Vì a, b, c không âm )
\(\Rightarrow a^3+b^3+c^3\ge3abc\)( đpcm )
Dựng góc nhọn ∠xOy = α tùy ý.
Trên tia Ox lấy điểm B bất kì, kẻ BA ⊥ Oy (A ∈ Oy)
Theo định nghĩa tỉ số lượng giác của góc nhọn, ta có:
Dựng góc nhọn ∠xOy = α tùy ý.
Trên tia Ox lấy điểm B bất kì, kẻ BA ⊥ Oy (A ∈ Oy)
Theo định nghĩa tỉ số lượng giác của góc nhọn, ta có:
b) Áp dụng định lí pitago trong tam giác vuông OAB có:
O B 2 = O A 2 + A B 2
Từ đó ta có:
Áp dụng định lí pitago trong tam giác vuông OAB có:
OB2 = OA2 + AB2
Từ đó ta có:
Áp dụng BĐT Cauchy-Schwarz ta có:
\(\dfrac{a}{\sqrt{a^2+1}}=\dfrac{a}{\sqrt{a^2+ab+bc+ca}}=\dfrac{a}{\sqrt{\left(a+b\right)\left(a+c\right)}}\)
\(\le\dfrac{1}{2}\left(\dfrac{a}{a+b}+\dfrac{a}{a+c}\right)\). Thiếp lập 2 BĐT còn lại:
\(\dfrac{b}{\sqrt{b^2+1}}\le\dfrac{1}{2}\left(\dfrac{b}{b+c}+\dfrac{b}{a+b}\right);\dfrac{c}{\sqrt{c^2+1}}\le\dfrac{1}{2}\left(\dfrac{c}{c+a}+\dfrac{c}{b+c}\right)\)
Cộng theo vế 3 BĐT trên ta có:
\(A\le\dfrac{1}{2}\left(\dfrac{a+b}{a+b}+\dfrac{b+c}{b+c}+\dfrac{c+a}{c+a}\right)=\dfrac{1}{2}\cdot3=\dfrac{3}{2}\)
Xảy ra khi \(a=b=c=\dfrac{1}{\sqrt{3}}\)
3x2 + 17y3 = 3x2 + 9y3 + 8y3 \(\ge\)
cho hỏi bn tách cái 17y^3 dựa vào j vậy???