Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/(b+c)+c/(a+d)=a^2+ad+c^2+bc/(a+d)(b+c)>=4(a^2+ad+c^2+bc)/(a+b+c+d)^2(BĐT 1/xy>=4/(x+y)^2
Tương tự rồi cộng lại ta có a/b+c+c/a+d+b/c+d+d/a+b>=4(a^2+b^2+c^2+d^2+ad+bc+ab+cd)/(a+b+c+d)^2=A
>>>Ta sẽ chứng minh A>=1/2 hay 2(a^2+b^2+c^2+d^2+ab+bc+cd+da)>=(a+b+c+d)^2
tương đương với a^2+b^2+c^2+d^2-2ac-2bd>=0<<->>(a-c)^2+(b-d)^2>=0(luôn đúng)(đpcm)
Dấu = xảy ra khi a=c và b=d
đây là Nesbit 4 số
nếu như gặp bđt Nesbit thì làm thế này:
đặt \(B=\frac{b}{b+c}+\frac{c}{c+d}+\frac{d}{d+a}+\frac{a}{a+b}\)
\(C=\frac{c}{b+c}+\frac{d}{c+d}+\frac{a}{d+a}+\frac{b}{a+b}\)
\(B+C=\frac{a+b}{a+b}+\frac{b+c}{b+c}+\frac{c+d}{c+d}+\frac{d+a}{d+a}=4\)
\(A+B=\frac{a+b}{b+c}+\frac{b+c}{c+d}+\frac{c+d}{d+a}+\frac{d+a}{a+b}\ge4\)(theo cô si)
\(A+C=\left(a+c\right)\left(\frac{1}{b+c}+\frac{1}{d+a}\right)+\left(b+d\right)\left(\frac{1}{c+d}+\frac{1}{a+b}\right)\)
\(\ge\frac{4\left(a+c\right)}{a+b+c+d}+\frac{4\left(b+d\right)}{a+b+c+d}=\frac{4\left(a+b+c+d\right)}{a+b+c+d}=4\)
\(\Rightarrow2A+B+C\ge8\Rightarrow2A+4\ge8\Rightarrow A\ge2\)
dấu bằng khi a=b=c=d
Câu hỏi của Called love - Toán lớp 8 - Học toán với OnlineMath
Ban jtrar My làm òi nhé !
Bạn tham khảo tại đây :
Câu hỏi của Nguyễn Anh Quân - Toán lớp 8 - Học toán với OnlineMath
~ Ủng hộ nhé
Đây nhé
Đặt b + c = x ; c + a = y ; a + b = z
\(\Rightarrow\hept{\begin{cases}x+y=2c+b+a=2c+z\\y+z=2a+b+c=2a+x\\x+z=2b+a+c=2b+y\end{cases}}\)
\(\Rightarrow\frac{x+y-z}{2}=c;\frac{y+z-x}{2}=a;\frac{x+z-y}{2}=b\)
Thay vào PT đã cho ở đề bài , ta có :
\(\frac{y+z-x}{2x}+\frac{x+z-y}{2y}+\frac{x+y-z}{2z}\)
\(=\frac{1}{2}\left(\frac{y}{x}+\frac{z}{x}+\frac{x}{y}+\frac{z}{y}+\frac{x}{z}+\frac{y}{z}-3\right)\)
\(\ge\frac{1}{2}\left(2+2+2-3\right)=\frac{3}{2}\)
( cái này cô - si cho x/y + /x ; x/z + z/x ; y/z + z/y)
\(\frac{a+b+c}{3}\ge\sqrt[3]{abc}\)
\(\Leftrightarrow a+b+c-3\sqrt[3]{abc}\ge0\)
\(\Leftrightarrow\left(\sqrt[3]{a}+\sqrt[3]{b}\right)^3+c-3\sqrt[3]{ab}\left(\sqrt[3]{a}+\sqrt[3]{b}\right)-3\sqrt[3]{abc}\ge0\)
\(\Leftrightarrow\left(\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}\right)\left(\sqrt[3]{a^2}+\sqrt[3]{b^2}+\sqrt[3]{c^2}-\sqrt[3]{ab}-\sqrt[3]{bc}-\sqrt[3]{ac}\right)\ge0\)
Mà ta có \(\hept{\begin{cases}\left(\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}\right)\ge0\\\left(\sqrt[3]{a^2}+\sqrt[3]{b^2}+\sqrt[3]{c^2}-\sqrt[3]{ab}-\sqrt[3]{bc}-\sqrt[3]{ac}\right)\ge0\end{cases}}\)nên cái BĐT là đúng
- Ta có BĐT giữa trung bình nhân và trung bình cộng : \(\frac{a+b}{2}\ge\sqrt{ab}\) ; \(\frac{c+d}{2}\ge\sqrt{cd}\)
- Trước hết ta chứng minh BĐT \(\frac{a+b+c+d}{4}\ge\sqrt[4]{abcd}\)
Áp dụng BĐT trên , ta được : \(\frac{a+b+c+d}{2}=\frac{a+b}{2}+\frac{c+d}{2}\ge2\sqrt{\frac{\left(a+b\right)}{2}.\frac{\left(c+d\right)}{2}}\ge2\sqrt{\sqrt{ab}.\sqrt{cd}}=2\sqrt[4]{abcd}\)
\(\Leftrightarrow\frac{a+b+c+d}{4}\ge\sqrt[4]{abcd}\) (*)
- Đặt \(d=\frac{a+b+c}{3}\) thì \(a+b+c=3d\) (**)
Từ (*) và (**) ta có : \(\frac{3d+d}{4}\ge\sqrt[4]{abcd}\Leftrightarrow d\ge\sqrt[4]{abcd}\Leftrightarrow d^4\ge abcd\Leftrightarrow d^3\ge abc\Leftrightarrow d\ge\sqrt[3]{abc}\)
hay \(\frac{a+b+c}{3}\ge\sqrt[3]{abc}\) (đpcm)
Bạn tự xét dấu đẳng thức nhé!
Đặt \(\hept{\begin{cases}-a+2b+2c=x\\2a-b+2c=y\\2a+2b-c=z\end{cases}}\)\(\Rightarrow\hept{\begin{cases}a=\frac{2y+2z-x}{9}\\b=\frac{2z+2x-y}{9}\\c=\frac{2x+2y-z}{9}\end{cases}}\)
Vì a,b,c là độ dài 3 cạnh của 1 tam giác nên x,y,z>0
Khi đó : \(VT=\frac{2y+2z-x}{9x}+\frac{2z+2x-y}{9y}+\frac{2x+2y-z}{9z}\)
\(=\frac{2}{9}\left(\frac{x}{y}+\frac{y}{x}\right)+\frac{2}{9}\left(\frac{y}{z}+\frac{z}{y}\right)+\frac{2}{9}\left(\frac{z}{x}+\frac{x}{z}\right)-\frac{1}{3}\)
\(\ge\frac{2}{9}.2+\frac{2}{9}.2+\frac{2}{9}.2-\frac{1}{3}\)(BĐT Cauchy cho 2 số không âm)
\(=\frac{4}{9}.3-\frac{1}{3}=\frac{4}{3}-\frac{1}{3}=1\)
\(\frac{a}{2b+2c-a}+\frac{b}{2a+2c-b}+\frac{c}{2a+2b-c}\)
\(\frac{a^2}{2ab+2ac-a^2}+\frac{b^2}{2ab+2bc-b^2}+\frac{c^2}{2ac+2bc-c^2}\)
đặt pt là P
\(P\ge\frac{\left(a+b+c\right)^2}{2ab+2ac-a^2+2ab+2bc-b^2+2ac+2bc-c^2}\)
\(P\ge\frac{\left(a+b+c\right)^2}{4ab+4ac+4bc-a^2-b^2-c^2}\)
\(a^2+b^2+c^2\ge2ab+2bc+2ca\)(BĐT tương đương)
\(P\ge\frac{\left(a+b+c\right)^2}{4ab+4ac+4bc-a^2-b^2-c^2}\ge\frac{\left(a+b+c\right)^2}{2ab+2ac+2bc}\)
\(\left(a+b+c\right)^2\ge2ab+2ac+2bc\)(BĐT tương đương)
\(P\ge1\)
mình ko chắc đã đúng
xét hiệu a3+b3+3abc=(a+b+c)(a2+b2+c2-ab-ac-bc)=(a+b+c)\(\frac{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}{2}\ge0\)
đẳng thức xảy ra khi a=b=c
Ta có: \(a^3+b^3+c^3-3abc=\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc\)
\(=\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc\)
\(=\left(a+b+c\right)^3-3.\left(a+b\right).c.\left(a+b+c\right)-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right).\left[\left(a+b+c\right)^2-3\left(a+b\right).c-3ab\right]\)
\(=\left(a+b+c\right).\left(a^2+b^2+c^2+2ab+2bc+2ca-3ac-3bc-3ab\right)\)
\(=\left(a+b+c\right).\left(a^2+b^2+c^2-ab-bc-ca\right)\)
\(=\frac{1}{2}.\left(a+b+c\right).\left(2a^2+2b^2+2c^2-2ab-2bc-2ca\right)\)
\(=\frac{1}{2}.\left(a+b+c\right).\left[\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)\right]\)
\(=\frac{1}{2}.\left(a+b+c\right).\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]\ge0\)( Vì a, b, c không âm )
\(\Rightarrow a^3+b^3+c^3\ge3abc\)( đpcm )