K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 6 2017

Đặt \(t=sinx\) , \(-1\le t\le1\)

Phương trình đã cho trở thành:

\(4t^2-2\left(\sqrt{3}+1\right)t+\sqrt{3}=0\)

\(\Leftrightarrow\left(2t-1\right)\left(2t-\sqrt{3}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t=\dfrac{1}{2}\\t=\dfrac{\sqrt{3}}{2}\end{matrix}\right.\) (nhận)

+ Với \(sinx=\dfrac{1}{2}\Rightarrow sinx=sin\dfrac{\pi}{6}\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{6}+k2\pi\\x=\dfrac{5\pi}{6}+k2\pi\end{matrix}\right.\) \(\left(k\in Z\right)\)

+ Với \(sinx=\dfrac{\sqrt{3}}{2}\Rightarrow sinx=sin\dfrac{\pi}{3}\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{3}+k2\pi\\x=\dfrac{2\pi}{3}+k2\pi\end{matrix}\right.\) \(\left(k\in Z\right)\)

Vậy ....

NV
21 tháng 9 2021

\(\Leftrightarrow\left(\sqrt{3}+2\right)sinx+cosx=2sin3x+2sinx\)

\(\Leftrightarrow\sqrt{3}sinx+cosx=2sin3x\)

\(\Leftrightarrow\dfrac{\sqrt{3}}{2}sinx+\dfrac{1}{2}cosx=sin3x\)

\(\Leftrightarrow sin\left(x+\dfrac{\pi}{6}\right)=sin3x\)

\(\Leftrightarrow\left[{}\begin{matrix}3x=x+\dfrac{\pi}{6}+k2\pi\\3x=\dfrac{5\pi}{6}-x+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow x=...\)

19 tháng 6 2020

Cái chỗ biến đổi tương đương cuối cùng bạn làm rõ chút dc ko???

NV
19 tháng 6 2020

Ném đoạn \(2sin^2x+\left(3\sqrt{2}-2\right)sinx+1\) vào casio mà bấm pt bậc 2 thôi, nó sẽ tách ra biểu thức như cái cuối cùng

Hoặc là tách thế này:

\(2sin^2x+\left(3\sqrt{2}-2\right)sinx+1\)

\(=2\left[sin^2x-2.\frac{2-3\sqrt{2}}{4}sinx+\left(\frac{2-3\sqrt{2}}{4}\right)^2-\left(\frac{2-3\sqrt{2}}{4}\right)^2\right]+1\)

\(=2\left(sinx-\frac{2-3\sqrt{2}}{4}\right)^2-2\left(\frac{2-3\sqrt{2}}{4}\right)^2+1\)

\(=2\left(sin^2x-\frac{2-3\sqrt{2}}{4}\right)^2+\frac{6\sqrt{2}-7}{4}\)

Với lưu ý \(\frac{6\sqrt{2}-7}{4}>0\) nên biểu thức luôn dương

22 tháng 9 2019


NV
19 tháng 9 2020

Trong khoảng đã cho \(tanx\) luôn dương nên ko cần tìm ĐKXĐ

\(\Leftrightarrow1+sinx+cosx+sin2x+cos2x=0\)

\(\Leftrightarrow sinx+cosx+2sinx.cosx+2cos^2x=0\)

\(\Leftrightarrow sinx+cosx+2cosx\left(sinx+cosx\right)=0\)

\(\Leftrightarrow\left(sinx+cosx\right)\left(2cosx+1\right)=0\)

Do \(0< x< \frac{\pi}{2}\Rightarrow\left\{{}\begin{matrix}sinx>0\\cosx>0\end{matrix}\right.\)

\(\Rightarrow\left(sinx+cosx\right)\left(2cosx+1\right)>0\)

Pt vô nghiệm trên \(\left(0;\frac{\pi}{2}\right)\)

15 tháng 7 2023

1) \(\sqrt[]{3x+7}-5< 0\)

\(\Leftrightarrow\sqrt[]{3x+7}< 5\)

\(\Leftrightarrow3x+7\ge0\cap3x+7< 25\)

\(\Leftrightarrow x\ge-\dfrac{7}{3}\cap x< 6\)

\(\Leftrightarrow-\dfrac{7}{3}\le x< 6\)

26 tháng 8 2021

undefined

26 tháng 8 2021

undefined

5 tháng 9 2020

đề câu 1 đúng r

5 tháng 9 2020

ngại viết quá hihi, mà hơi ngáo tí cái dạng này lm rồi mà cứ quên

bài trước mk bình luận bạn đọc chưa nhỉ