K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 8 2017

2cos2x+7sin22x=0

Bạn áp dung CT: sina=2sina.cosa là ra

pt<=>2cos2x+7.(2.sinx.cosx)2=0

<=>2cos2x+7.4.sin2x.cos2x=0

<=>2cos2x+28sin2x.cos2x=0

<=>2cos2x.(1+14sin2x)=0

<=>\(\left[{}\begin{matrix}cosx=0\\sin^2x=\dfrac{-1}{14}\end{matrix}\right.\)\(\left[{}\begin{matrix}x=\dfrac{\Pi}{2}+k\Pi\\vn\end{matrix}\right.\) (k thuộc Z)

12 tháng 8 2017

2cosx(1-sinx)+\(\sqrt{3}\)cos2x=0

<=>2cosx-2sinx.cosx+\(\sqrt{3}\)cos2x=0

<=>2cosx-sin2x+\(\sqrt{3}\)cos2x=0 (2sinx.cosx=sin2x)

<=>2cosx=sin2x-\(\sqrt{3}\)cos2x (*)

Tới đây bạn xem sách giáo khoa trang 35 nhé, người ta hướng dẫn kĩ lắm rồi đấy hihi!

(*)<=>2cosx=2sin(2x-\(\dfrac{\Pi}{3}\))

<=>cosx=sin(2x-\(\dfrac{\Pi}{3}\))

Tới đây bạn áp dung công thức Phụ Chéo (hình như cuối năm lớp 10 học rồi):

TỔng quát: cosx=sin(\(\dfrac{\Pi}{2}\)-x)

pt<=>sin(\(\dfrac{\Pi}{2}\)-x)=sin(2x-\(\dfrac{\Pi}{3}\))

<=>\(\left[{}\begin{matrix}\dfrac{\Pi}{2}-x=2x-\dfrac{\Pi}{3}\\\dfrac{\Pi}{2}-x=\Pi-2x+\dfrac{\Pi}{3}\end{matrix}\right.\)

<=>\(\left[{}\begin{matrix}x=\dfrac{5\Pi}{18}+\dfrac{k2\Pi}{3}\\x=\dfrac{5\Pi}{6}+k2\Pi\end{matrix}\right.\)(k thuộc Z)

Chúc bạn học tốt!

Có gì bạn vào tìm kiếm, gõ"0941487990" kết bạn facebook, inbox có gì giúp dc thì mình giúp cho!

28 tháng 6 2018

giúp mk với

NV
14 tháng 9 2020

a/ \(y=sin2x+\left(\sqrt{3}+1\right)cos2x+sin^2x-cos^2x-1\)

\(=sin2x+\sqrt{3}cos2x-1=2sin\left(2x+\frac{\pi}{3}\right)-1\)

Do \(-1\le sin\left(2x+\frac{\pi}{3}\right)\le1\Rightarrow-3\le y\le1\)

b/ \(y=2sin^2x-2cos^2x-3sinx.cosx-1\)

\(=-2cos2x-\frac{3}{2}sin2x-1=-\frac{5}{2}\left(\frac{3}{5}sinx+\frac{4}{5}cosx\right)-1\)

\(=-\frac{5}{2}sin\left(x+a\right)-1\Rightarrow-\frac{7}{2}\le y\le\frac{3}{2}\)

c/ \(y=1-sin2x+2cos2x+\frac{3}{2}sin2x=\frac{1}{2}sin2x+2cos2x+1\)

\(=\frac{\sqrt{17}}{2}\left(\frac{1}{\sqrt{17}}sin2x+\frac{4}{\sqrt{17}}cos2x\right)+1=\frac{\sqrt{17}}{2}sin\left(2x+a\right)+1\)

\(\Rightarrow-\frac{\sqrt{17}}{2}+1\le y\le\frac{\sqrt{17}}{2}+1\)

NV
26 tháng 7 2020

Đặt \(cosx=t\) với \(-1\le t\le1\)

\(\Rightarrow4t^2+2t-2-\sqrt{2}=0\)

\(\Rightarrow\left[{}\begin{matrix}t=\frac{-1+\sqrt{\left(2\sqrt{2}+1\right)^2}}{4}=\frac{\sqrt{2}}{2}\\t=\frac{-1-\sqrt{\left(2\sqrt{2}+1\right)^2}}{4}=\frac{-1-\sqrt{2}}{2}< -1\left(l\right)\end{matrix}\right.\)

\(\Rightarrow cosx=\frac{\sqrt{2}}{2}\)

\(\Rightarrow x=\pm\frac{\pi}{4}+k2\pi\)

NV
29 tháng 10 2020

1d.

Đề ko rõ

1e.

\(\Leftrightarrow\left(4cos^3x-3cosx\right)^2.cos2x-cos^2x=0\)

\(\Leftrightarrow cos^2x\left(4cos^2x-3\right)^2.cos2x-cos^2x=0\)

\(\Leftrightarrow cos^2x\left(2cos2x-1\right)^2cos2x-cos^2x=0\)

\(\Leftrightarrow cos^2x\left[\left(2cos2x-1\right)^2.cos2x-1\right]=0\)

\(\Leftrightarrow cos^2x\left(4cos^32x-4cos^22x+cos2x-1\right)=0\)

\(\Leftrightarrow cos^2x\left(cos2x-1\right)\left(4cos^22x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=0\\cos2x=1\end{matrix}\right.\) \(\Leftrightarrow...\)

NV
29 tháng 10 2020

2b.

Đề thiếu

2c.

Nhận thấy \(cos2x=0\) ko phải nghiệm, chia 2 vế cho \(cos^32x\)

\(\frac{8sin^22x}{cos^22x}=\frac{\sqrt{3}sin2x}{cos2x}.\frac{1}{cos^22x}+\frac{1}{cos^22x}\)

\(\Leftrightarrow8tan^22x=\sqrt{3}tan2x\left(1+tan^22x\right)+1+tan^22x\)

\(\Leftrightarrow\sqrt{3}tan^32x-7tan^22x+\sqrt{3}tan2x+1=0\)

\(\Leftrightarrow\left[{}\begin{matrix}tanx=\frac{1}{\sqrt{3}}\\tanx=\sqrt{3}-2\\tanx=\sqrt{3}+2\end{matrix}\right.\)

\(\Leftrightarrow...\)

3 tháng 9 2018

\(\left(sin\dfrac{x}{2}-cox\dfrac{x}{2}\right)^2+\sqrt{3}cosx=2sin5x+1\)

\(sin^2\dfrac{x}{2}+cos^2\dfrac{x}{2}-2sin\dfrac{x}{2}cos\dfrac{x}{2}+\sqrt{3}cosx=2sin5x+1\)

\(1-sinx+\sqrt{3}cosx=2sin5x+1\)

\(sin\left(\dfrac{\Pi}{3}-x\right)=sin5x\)

3 tháng 9 2018

\(2sinx\left(\sqrt{3}cosx+sinx+2sin3x\right)=1\)

\(2\sqrt{3}sinxcosx+2sin^2x+4sinxsin3x=1\)

\(\sqrt{3}sin2x+1-cos2x+cos2x-2cos4x=1\)

\(\sqrt{3}sin2x+cos2x=2cos4x\)

\(cos\left(2x-\dfrac{\Pi}{3}\right)=cos4x\)

NV
19 tháng 10 2020

1.

\(4\left(1-cos^23x\right)+2\left(\sqrt{3}+1\right)cos3x-\sqrt{3}-4=0\)

\(\Leftrightarrow-4cos^23x+2\left(\sqrt{3}+1\right)cos3x-\sqrt{3}=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos3x=-\frac{1}{2}\\cos3x=\frac{\sqrt{3}}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\pm\frac{2\pi}{9}+\frac{k2\pi}{3}\\x=\pm\frac{\pi}{18}+\frac{k2\pi}{3}\end{matrix}\right.\)

2.

\(\Leftrightarrow\frac{\sqrt{3}-1}{2\sqrt{2}}sinx-\frac{\sqrt{3}+1}{2\sqrt{2}}cosx=-\frac{\sqrt{3}-1}{2\sqrt{2}}\)

\(\Leftrightarrow sin\left(x-\frac{5\pi}{12}\right)=-cos\left(\frac{5\pi}{12}\right)\)

\(\Leftrightarrow sin\left(x-\frac{5\pi}{12}\right)=sin\left(-\frac{\pi}{12}\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\frac{5\pi}{12}=-\frac{\pi}{12}+k2\pi\\x-\frac{5\pi}{12}=\frac{13\pi}{12}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow...\)

NV
19 tháng 10 2020

3.

Nhận thấy \(cosx=0\) ko phải nghiệm, chia 2 vế cho \(cos^2x\)

\(3tan^2x+8tanx+8\sqrt{3}-9=0\)

\(\Leftrightarrow\left[{}\begin{matrix}tanx=-\sqrt{3}\\tanx=\frac{3\sqrt{3}-8}{3}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{\pi}{3}+k2\pi\\x=arctan\left(\frac{3\sqrt{3}-8}{3}\right)+k2\pi\end{matrix}\right.\)

4.

\(\Leftrightarrow sin\left(x-120^0\right)=-cos\left(2x\right)=sin\left(2x-90^0\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-90^0=x-120^0+k360^0\\2x-90^0=300^0-x+k360^0\end{matrix}\right.\)

\(\Leftrightarrow...\)

5.

\(\Leftrightarrow\frac{1}{2}-\frac{1}{2}cos2x=\frac{1}{2}-\frac{1}{2}cos6x\)

\(\Leftrightarrow cos6x=cos2x\)

\(\Leftrightarrow\left[{}\begin{matrix}6x=2x+k2\pi\\6x=-2x+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow...\)

NV
22 tháng 8 2020

\(\Leftrightarrow2cosx-sinx-4sin^2x.cosx+2sin^3x=sin^3x+cos^3x\)

\(\Leftrightarrow sin^3x-cos^3x-4sin^2x.cosx+2cosx-sinx=0\)

- Với \(\left\{{}\begin{matrix}cosx=0\\sinx=1\end{matrix}\right.\) \(\Leftrightarrow x=\frac{\pi}{2}+k2\pi\) là nghiệm của pt

- Với \(cosx\ne0\) chia 2 vế cho \(cos^3x\)

\(tan^3x-1-4tan^2x+2\left(1+tan^2x\right)-tanx\left(1+tan^2x\right)=0\)

\(\Leftrightarrow-2tan^2x-tanx+3=0\)

\(\Rightarrow\left[{}\begin{matrix}tanx=1\\tanx=-\frac{3}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+k\pi\\x=arctan\left(-\frac{3}{2}\right)+k\pi\end{matrix}\right.\)