K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 6 2017

B C M S R O A H

Ta có: \(\left\{{}\begin{matrix}MS\perp BC\\RC\perp BC\end{matrix}\right.\) \(\Rightarrow MS\) // RC.

\(\Rightarrow\widehat{MSR}=\widehat{CRS}\) (so le trong) (1)

Lại có: \(\left\{{}\begin{matrix}MR\perp AC\\BC\perp AC\end{matrix}\right.\) \(\Rightarrow MR\) // BC

\(\Rightarrow\widehat{MRS}=\widehat{CSR}\) (so lẻ trong) (2)

SR chung (3)

Từ \(\left(1\right);\left(2\right);\left(3\right)\Rightarrow\Delta MSR=\Delta CRS\left(g.c.g\right)\)

\(\Rightarrow MS=CR.\) (4)

mà SC chung (5)

Từ (4); (5) \(\Rightarrow\Delta MSC=\Delta RCS\left(cgv-cgv\right)\)

\(\Rightarrow MC=RS.\)

Gọi giao điểm của MC và RS là H

Xét \(\Delta MHS;\Delta CHR:\)

\(\widehat{SMH}=\widehat{RCH}\) (so le trog)

\(MS=CR\) (suy từ điều c/m trên)

\(\widehat{MSH}=\widehat{CRH}\) (so le trog)

\(\Rightarrow\Delta MHS=\Delta CHR\left(g.c.g\right)\)

\(\Rightarrow MH=CH\)

\(\Rightarrow H\) là tđ của CM -> đpcm.

Tương tự c/m: \(H\) là tđ của \(RS.\)

14 tháng 6 2017

a/ Ta có : MS _|_ BC, MR _|_ AC (gt) nên góc MSC = góc MRC = 90 độ.

Tam giác ABC có góc C = 90 độ (gt) do đó góc MSC = góc MRC = góc SCR = 90 độ

Vậy tứ giác MRCS là hình chữ nhật ( vì có ba góc vuông)

Vì tứ giác MRCS là hình chữ nhật nên => Có RS và CM là 2 đường chéo

Dựa theo tính chất HCN => RS = AM ( vì 2 đường chéo bằng nhau ) và cắt nhau tại trung điểm mỗi đoạn
C B A R S O M

6 tháng 8 2018

a) Xét tứ giác RMSC có: \(\widehat{C}=\widehat{S}=\widehat{R}=90^o\) nên RMSC là hình chữ nhật.

Vậy thì hai đường chéo RS và CM bằng nhau và cắt nhau tại trung điểm mỗi đường.

b)  

Do tam giác ABC là tam giác vuông nên trung tuyến CO = AO = OB.

Cũng do tam giác ABC là tam giác vuông cân nên \(\widehat{A}=45^o\) và CO là trung tuyến đồng thời là phân giác.

Vậy thì \(\widehat{OCB}=45^o\)

Xét tam giác ARM có \(\widehat{ARM}=90^o;\widehat{RAM}=45^o\) nên ARM là tam giác cân tại R.

Suy ra RA = RM, mà RM = CS nên CS = AR.

Xét tam giác ARO và tam giác CSO  có: 

AO = CO 

AR = CS

\(\widehat{OAR}=\widehat{OCS}=45^o\)

\(\Rightarrow\Delta ARO=\Delta CSO\left(c-g-c\right)\)

\(\Rightarrow RO=SO;\widehat{AOR}=\widehat{COS}\)

Vậy tam giác ORS cân tại O.

Lại có \(\widehat{ROS}=\widehat{ROC}+\widehat{COS}=\widehat{ROC}+\widehat{AOR}=90^o\)

Vậy nên tam giác ROS là tam giác vuông cân tại O.

16 tháng 8 2018

Bài giải : 

a) Xét tứ giác RMSC có: ^C=^S=^R=90o nên RMSC là hình chữ nhật.

Vậy thì hai đường chéo RS và CM bằng nhau và cắt nhau tại trung điểm mỗi đường.

b)  

Do tam giác ABC là tam giác vuông nên trung tuyến CO = AO = OB.

Cũng do tam giác ABC là tam giác vuông cân nên ^A=45o và CO là trung tuyến đồng thời là phân giác.

Vậy thì ^OCB=45o

Xét tam giác ARM có ^ARM=90o;^RAM=45o nên ARM là tam giác cân tại R.

Suy ra RA = RM, mà RM = CS nên CS = AR.

Xét tam giác ARO và tam giác CSO  có: 

AO = CO 

AR = CS

^OAR=^OCS=45o

⇒ΔARO=ΔCSO(c−g−c)

⇒RO=SO;^AOR=^COS

Vậy tam giác ORS cân tại O.

Lại có ^ROS=^ROC+^COS=^ROC+^AOR=90o

Vậy nên tam giác ROS là tam giác vuông cân tại O.

24 tháng 9 2017

a) +Xét tứ giác CRSM có: góc RCS= góc CSR= góc CRS = 90độ

=> Tứ giác CRSM là hcn (vì tứ giác có 3 góc vuông)

=>CM = RS (vì hcn có 2 đg chéo = nhau)

=>CM và RS cắt nhau tại trung điểm của mỗi đường (T/c đg chéo hcn)

6 tháng 8 2018

Em tham khảo tại link dưới đây nhé:

Câu hỏi của Bùi Khánh Chi - Toán lớp 8 - Học toán với OnlineMath

13 tháng 7 2019

A B C M N Q P O R S T A B C H M D I A B C D K G M K E P F (Hình a) (Hình b) (Hình c) Q I

Bài toán 1: (Hình a)

Gọi đường thẳng qua N vuông góc với AN cắt AC tại R, qua P kẻ đường thẳng song song với BC. Đường thẳng này cắt AM,AN,BC lần lượt tại S,T,K.

Ta thấy \(\Delta\)APR có AN vừa là đường cao, đường phân giác => \(\Delta\)APR cân tại A => AP = AR, NP = NR

Áp dụng hệ quả ĐL Thales \(\frac{BM}{PS}=\frac{CM}{KS}\left(=\frac{AM}{AS}\right)\)=> PS = KS

Áp dụng ĐL đường phân giác trong tam giác: \(\frac{TK}{TP}=\frac{AK}{AP}\Rightarrow\frac{ST+SK}{TP}=\frac{AK}{AR}\)

\(\Rightarrow\frac{2ST+PT}{TP}=\frac{AR+RK}{AR}\Rightarrow\frac{2ST}{TP}=\frac{RK}{AR}\)

Dễ thấy NS là đường trung bình của  \(\Delta\)RKP => RK = 2NS. Do đó \(\frac{ST}{TP}=\frac{NS}{AR}\)

Đồng thời NS // AR, suy ra \(\frac{ST}{TP}=\frac{NS}{AR}=\frac{SQ}{QA}\)=> QT // AP (ĐL Thaels đảo)

Mà AP vuông góc PO nên QT vuông góc PO. Từ đây suy ra T là trực tâm của \(\Delta\)POQ

=> QO vuông góc PT. Lại có PT // BC nên QO vuông góc BC (đpcm).

Bài toán 2: (Hình b)

Ta có IB = IC => \(\Delta\)BIC cân tại I => ^IBC = ^ICB = ^ACB/2 => \(\Delta\)MCI ~ \(\Delta\)MBC (g.g)

=> MC2 = MI.MB. Xét \(\Delta\)AHC có ^AHC = 900 , trung tuyến HM => HM = MC

Do đó MH2 = MI.MB => \(\Delta\)MIH ~ \(\Delta\)MHB (c.g.c) => ^MHI = ^MBH = ^MBC = ^MCI

=> Tứ giác CHIM nội tiếp. Mà CI là phân giác ^MCH nên (IH = (IM hay IM = IH (đpcm).

Bài toán 3: (Hình c)

a) Gọi đường thẳng qua C vuông góc CB cắt MK tại F, DE cắt BC tại Q, CG cắt BD tại I.

Áp dụng ĐL Melelaus:\(\frac{MB}{MC}.\frac{GA}{GB}.\frac{DC}{DA}=1\)suy ra \(\frac{DC}{DA}=2\)=> A là trung điểm DC

Khi đó G là trọng tâm của \(\Delta\)BCD. Do CG cắt BD tại I nên I là trung điểm BD

Dễ thấy \(\Delta\)BCD vuông cân tại B => BI = CM (=BC/2). Từ đó \(\Delta\)IBC = \(\Delta\)MCF (g.c.g)

=> CB = CF => \(\Delta\)BCF vuông cân ở C => ^CBA = ^CBF (=450) => B,A,F thẳng hàng

=> CA vuông góc GF. Từ đó K là trực tâm của \(\Delta\)CGF => GK vuông góc CF => GK // CM

Theo bổ đề hình thang thì P,Q lần lượt là trung điểm GK,CM. Kết hợp \(\Delta\)CEM vuông ở E

=> EQ=CM/2. Áp dụng ĐL Melelaus có \(\frac{GD}{GM}.\frac{EQ}{ED}.\frac{CM}{CQ}=1\)=> \(\frac{EQ}{ED}=\frac{1}{4}\)

=> \(\frac{ED}{CM}=2\)=> DE = 2CM = BC (đpcm).

b) Theo câu a thì EQ là trung tuyến của \(\Delta\)CEM vuông tại E => EQ = QC => ^QEC = ^QCE

Vì vậy ^PEG = ^QEC = ^QCE = ^PGE => \(\Delta\)EPG cân tại P => PG = PE (đpcm).

8 tháng 5 2016

??????

20 tháng 8 2016

bài này mình học

rùi nhưng ko nhớ