Viết mỗi biểu thức sau dưới dạng hiệu hai bình phương:
a. x2 - 6x - y2 - 4y + 5
b. 4a2 -12a - b2 + 2b + 8
em cấn lời giải chi tiết ạ ! cho em cảm ơn trc
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x^2-6x-y^2-4y+5=x^2-6x+9-y^2-4y-4\)
\(=\left(x^2-6x+9\right)-\left(y^2+4y+4\right)=\left(x-3\right)^2-\left(y+2\right)^2\)
b) \(4a^2-12a-b^2+2b+8=4a^2-12a+9-b^2+2b-1\)
\(=\left(4a^2-12a+9\right)-\left(b^2-2b+1\right)=\left(2a-3\right)^2-\left(b-1\right)^2\)
x2 - 6x - y2 - 4y + 5
= ( x2 - 6x + 9 ) - ( y2 + 4y + 4 )
= ( x - 3 )2 - ( y + 2 )2
4a2 - 12a - b2 + 2b + 8
= ( 4a2 - 12a + 9 ) - ( b2 - 2b + 1 )
= ( 2a - 3 )2 - ( b - 1 )2
\(A=\left(x-1\right)\left(x+1\right)=x^2-1\)
\(B=\left(x-2y\right)\left(x+2y\right)=x^2-4y^2\)
\(C=\left(3x^2-2y\right)\left(3x^2+2y\right)=9x^4-4y^2\)
\(x^2-2xy+5y^2+4y+1\)
\(=x^2-2xy+y^2+4y^2+4y+1\)
\(=\left(x^2-2xy+y^2\right)+\left(4y^2+4y+1\right)\)
\(=\left(x-y\right)^2+\left(2y+1\right)^2\)
\(x^2-2xy+5y^2+4y+1=x^2-2xy+y^2+4y^2+4y+1=\left(x-y\right)^2+\left(2y+1\right)^2\)
\(\left(2x-4y\right)^2+2\left(2x-4y\right)+1=\left(2x-4y+1\right)^2\)
a) \(2x^2+2b^2=x^2+b^2+x^2+b^2=x^2+2xb+b^2+x^2-2xb+b^2=\left(x+b\right)^2+\left(x-b\right)^2\)
`a)x^2-2x+2+4y^2+4y`
`=x^2-2x+1+4y^2+4y+1`
`=(x-1)^2+(2y+1)^2`
`b)4x^2+y^2+12x+4y+13`
`=4x^2+12x+9+y^2+4y+4`
`=(2x+3)^2+(y+2)^2`
`c)x^2+17+4y^2+8x+4y`
`=x^2+8x+16+4y^2+4y+1`
`=(x+4)^2+(2y+1)^2`
`d)4x^2-12xy+y^2-4y+13`
`=4x^2-12x+9+y^2-4y+4`
`=(2x-3)^2+(y-2)^2`
a) \(x^2-2x+2+4y^2+4y=\left(x-1\right)^2+\left(2y+1\right)^2\)
b) \(4x^2+y^2+12x+4y+13=\left(2x+3\right)^2+\left(y+2\right)^2\)
c) \(x^2+17+4y^2+8x+4y=\left(x+4\right)^2+\left(2y+1\right)^2\)
d) \(4x^2-12x+y^2-4y+13=\left(2x-3\right)^2+\left(y-2\right)^2\)
Lời giải:
a. $-8x+16+x^2=x^2-2.x.4+4^2=(x-4)^2$
b. $xy^2+\frac{1}{4}x^2y^4+1=(\frac{1}{2}xy^2)^2+2.\frac{1}{2}xy^2.1+1^2$
$=(\frac{1}{2}xy^2+1)^2$
a: \(x^2-8x+16=\left(x-4\right)^2\)
b: \(\dfrac{1}{4}x^2y^4+xy^2+1=\left(\dfrac{1}{2}xy^2+1\right)^2\)
a, \(25x^2+5xy+\frac{1}{4}y^2=\left(5x\right)^2+2.5x.\frac{1}{2}y+\left(\frac{1}{2}y\right)^2\)
\(=\left(5x+\frac{1}{2}y\right)^2\)
b, \(9x^2+12x+4=\left(3x\right)^2+2.3x.2+2^2=\left(3x+2\right)^2\)
c, \(x^2-6x+5-y^2-4y=\left(x^2-6x+9\right)-\left(y^2+4y+4\right)\)
\(=\left(x-3\right)^2-\left(y+2\right)^2=\left(x-y-5\right)\left(x+y-1\right)\)
d, \(\left(2x-y\right)^2+4\left(x+y\right)^2-4\left(2x-y\right)\left(x+y\right)\)
\(=\left(2x-y\right)^2-2\left(2x-y\right)\left(2x+2y\right)+\left(2x+2y\right)^2\)
\(=\left(2x-y+2x+2y\right)^2=\left(4x+y\right)^2\)
a)x2-6x+9
=x2-2.x.3+32
=(x-3)2
b)4x2+4x+1
=(2x)2+2.2x.1+12
=(2x+1)2
c)4x2+12xy+9y2
=(2x)2+2.2x.3y+(3y)2
=(2x+3y)2
d)4x4-4x2+4
=(2x2)2-2.2x2.2+22
=(2x2-2)2
a) \(x^2-6x-y^2-4y+5=x^2-6x+9-\left(y^2+4x+4\right)=\left(x-3\right)^2-\left(y+2\right)^2\)
b) \(4a^2-12a-b^2+2b+8=4a^2-12a+9-\left(b^2-2b+1\right)=\left(2a-3\right)^2-\left(b-1\right)^2\)