K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Sửa đề :

Chứng minh rằng : 42010 + 22014 ⋮ 10

Bài làm :

Ta có : 42010 = 42.1005 = (42)1005 = .......61005 = ......6

           22014 = 22012.22 = 24.503 . 4 = (24)503 . 4 = .......6503 . 4 = .......6 . 4 = .......4

Khi đó 42010 + 22014 = ......6 + ......4 = ......0 ⋮ 10

Vậy 42010 + 22014 ⋮ 10

21 tháng 8 2021

xin lỗi, mình cứ hay chép sai đề

11 tháng 8 2020

Ta có : 42010 = 42.1005 = (42)1005 = (...6)1005 = ...6

Lại có 22014 = 22012.22 = 24.503 . 4 = (24)503 . 4 = (...6)503 . 4 = (...6) . 4 = ...4

Khi đó 42010 + 22014 = (...6) + (...4) = (...0) \(⋮\)10 (đpcm)

11 tháng 8 2020

                                                      Bài giải

                      Ta có : 

\(4^{2010}+2^{2014}=\left(4^2\right)^{1005}+\left(2^4\right)^{503}\cdot2^2=\overline{\left(...6\right)}^{1005}+\overline{\left(...6\right)}^{503}\cdot4=\overline{\left(...6\right)}+\overline{\left(...6\right)}\cdot4\)

\(=\overline{\left(...6\right)}+\overline{\left(...4\right)}=\overline{\left(...0\right)}\text{ }⋮\text{ }10\)

Vậy \(4^{2010}+2^{2014}\text{ }⋮\text{ }10\text{ }\left(ĐPCM\right)\)

22 tháng 9 2017

a/ Ta có :

\(9^{1945}-2^{1930}=\left(9^5\right)^{389}-\left(2^{10}\right)^{193}=\left(.....9\right)-\left(.....4\right)=\left(............5\right)⋮5\)

\(\Leftrightarrowđpcm\)

14 tháng 7 2015

Đề \(\Rightarrow a^{2014}+b^{2014}-2\left(a^{2013}+b^{2013}\right)+a^{2012}+b^{2012}=0\)

\(\Leftrightarrow a^{2012}\left(a^2-2a+1\right)+b^{2012}\left(b^2-2b+1\right)=0\)

\(\Leftrightarrow a^{2012}\left(a-1\right)^2+b^{2012}\left(b-1\right)^2=0\)

\(\Leftrightarrow\left(a=0\text{ hoặc }a=1\right)\text{ và }\left(b=0\text{ hoặc }b=1\right)\)

\(+a=0\text{ hoặc }a=1\text{ thì }a^{2014}=a^{2010}\)

\(+b=0\text{ hoặc }b=1\text{ thì }b^{2014}=b^{2010}\)

Suy ra \(a^{2014}+b^{2014}=a^{2010}+b^{2010}\)

30 tháng 7 2016

cho online math

30 tháng 7 2016

Tôi không biết

31 tháng 12 2015

ai tick mik đến 100 mik tick cho cả đời

10 tháng 10 2019

Bài 2:

a) \(9^{1945}-2^{1930}\)

Ta có:

\(\left\{{}\begin{matrix}9^{1945}=\left(9^5\right)^{389}=\overline{.......9}\\2^{1930}=\left(2^{10}\right)^{193}=\overline{.......4}\end{matrix}\right.\)

\(\Rightarrow\overline{........9}-\overline{.........4}=\overline{..........5}.\)

\(\overline{.......5}⋮5\) nên \(\overline{.........9}-\overline{........4}=\overline{........5}\)

\(\Rightarrow9^{1945}-2^{1930}⋮5\left(đpcm\right).\)

Chúc bạn học tốt!

11 tháng 1 2024

2007^5 có đuôi là 1 , 2014^4 có đuôi là 6 và 2013^13 có đuôi là 7; 1 + 6 - 7 = 0. Suy ra biểu thức trên \(⋮\) cho 10

12 tháng 1 2024

cảm ơn bạn rất nhiều 

1 tháng 10 2023

a, 10615 + 8 không chia hết cho 2 vì 8 ⋮ 2  nhưng 10615 không chia hết cho 2

10615 + 8 không chia hết cho 9 vì 1 + 6 + 1 + 5 + 8 = 21 không chia hết cho 9

1 tháng 10 2023

c,    B = 102010 -  4                                                                                   

       10 \(\equiv\) 1 (mod 3)

      102010 \(\equiv\) 12010 (mod 3)

      4          \(\equiv\) 1(mod 3)

⇒ 102010 - 4   \(\equiv\) 12010 - 1 (mod 3)

⇒ 102010 - 4   \(\equiv\)  0 (mod 3)

⇒ 102010 - 4 \(⋮\) 3