Chứng minh rằng:
\(4^{2010}-2^{2014}⋮10\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : 42010 = 42.1005 = (42)1005 = (...6)1005 = ...6
Lại có 22014 = 22012.22 = 24.503 . 4 = (24)503 . 4 = (...6)503 . 4 = (...6) . 4 = ...4
Khi đó 42010 + 22014 = (...6) + (...4) = (...0) \(⋮\)10 (đpcm)
Bài giải
Ta có :
\(4^{2010}+2^{2014}=\left(4^2\right)^{1005}+\left(2^4\right)^{503}\cdot2^2=\overline{\left(...6\right)}^{1005}+\overline{\left(...6\right)}^{503}\cdot4=\overline{\left(...6\right)}+\overline{\left(...6\right)}\cdot4\)
\(=\overline{\left(...6\right)}+\overline{\left(...4\right)}=\overline{\left(...0\right)}\text{ }⋮\text{ }10\)
Vậy \(4^{2010}+2^{2014}\text{ }⋮\text{ }10\text{ }\left(ĐPCM\right)\)
a/ Ta có :
\(9^{1945}-2^{1930}=\left(9^5\right)^{389}-\left(2^{10}\right)^{193}=\left(.....9\right)-\left(.....4\right)=\left(............5\right)⋮5\)
\(\Leftrightarrowđpcm\)
Đề \(\Rightarrow a^{2014}+b^{2014}-2\left(a^{2013}+b^{2013}\right)+a^{2012}+b^{2012}=0\)
\(\Leftrightarrow a^{2012}\left(a^2-2a+1\right)+b^{2012}\left(b^2-2b+1\right)=0\)
\(\Leftrightarrow a^{2012}\left(a-1\right)^2+b^{2012}\left(b-1\right)^2=0\)
\(\Leftrightarrow\left(a=0\text{ hoặc }a=1\right)\text{ và }\left(b=0\text{ hoặc }b=1\right)\)
\(+a=0\text{ hoặc }a=1\text{ thì }a^{2014}=a^{2010}\)
\(+b=0\text{ hoặc }b=1\text{ thì }b^{2014}=b^{2010}\)
Suy ra \(a^{2014}+b^{2014}=a^{2010}+b^{2010}\)
Bài 2:
a) \(9^{1945}-2^{1930}\)
Ta có:
\(\left\{{}\begin{matrix}9^{1945}=\left(9^5\right)^{389}=\overline{.......9}\\2^{1930}=\left(2^{10}\right)^{193}=\overline{.......4}\end{matrix}\right.\)
\(\Rightarrow\overline{........9}-\overline{.........4}=\overline{..........5}.\)
Vì \(\overline{.......5}⋮5\) nên \(\overline{.........9}-\overline{........4}=\overline{........5}\)
\(\Rightarrow9^{1945}-2^{1930}⋮5\left(đpcm\right).\)
Chúc bạn học tốt!
Chứng tỏ rằng:
a) 91945 - 21930 chia hết cho 5
b)42010+22014chia hết cho 10
AI GIẢI ĐƯỢC MIK TICK LUÔN!
2007^5 có đuôi là 1 , 2014^4 có đuôi là 6 và 2013^13 có đuôi là 7; 1 + 6 - 7 = 0. Suy ra biểu thức trên \(⋮\) cho 10
a, 10615 + 8 không chia hết cho 2 vì 8 ⋮ 2 nhưng 10615 không chia hết cho 2
10615 + 8 không chia hết cho 9 vì 1 + 6 + 1 + 5 + 8 = 21 không chia hết cho 9
c, B = 102010 - 4
10 \(\equiv\) 1 (mod 3)
102010 \(\equiv\) 12010 (mod 3)
4 \(\equiv\) 1(mod 3)
⇒ 102010 - 4 \(\equiv\) 12010 - 1 (mod 3)
⇒ 102010 - 4 \(\equiv\) 0 (mod 3)
⇒ 102010 - 4 \(⋮\) 3
Sửa đề :
Chứng minh rằng : 42010 + 22014 ⋮ 10
Bài làm :
Ta có : 42010 = 42.1005 = (42)1005 = .......61005 = ......6
22014 = 22012.22 = 24.503 . 4 = (24)503 . 4 = .......6503 . 4 = .......6 . 4 = .......4
Khi đó 42010 + 22014 = ......6 + ......4 = ......0 ⋮ 10
Vậy 42010 + 22014 ⋮ 10
xin lỗi, mình cứ hay chép sai đề