Đề thi tham khảo chuyên toán vào 10. Thời gian làm bài: 150 phút.
Câu 1:
a) Giải phương trình: \(\frac{x^2}{x-1}+\sqrt{x-1}+\frac{\sqrt{x-1}}{x^2}=\frac{x-1}{x^2}+\frac{1}{\sqrt{x-1}}+\frac{x^2}{\sqrt{x-1}}\)
b) Giải hệ phương trình: \(\hept{\begin{cases}\frac{x^2}{y^2}+2\sqrt{x^2+1}+y^2=3\\x+\frac{y}{\sqrt{1+x^2}+x}+y^2=0\end{cases}}\)
Câu 2:
a) Tìm tất cả các số nguyên dương m,n sao cho \(2^n+n=m!\)
b) Cho số tự nhiên \(n\ge2\).Biết rằng với mỗi số tự nhiên \(k\le\sqrt{\frac{n}{3}}\)thì \(k^2+k+n\)là một số nguyên tố. Chứng minh rằng với mỗi số tự nhiên \(k\le n-2\)thì \(k^2+k+n\)là một số nguyên tố.
Câu 3:
a) Cho \(x\le y\le z\)thỏa mã điểu kiện\(xy+yz+zx=k\)với k là một số nguyên dương lớn hơn 1.
Hỏi bất đẳng thức sau đây đúng hay không: \(xy^2z^3< k+1?\)
b) Cho a,b,c là các số thực dương thỏa mãn \(abc\le1\). Chứng minh rằng:
\(\sqrt{\frac{a^2+b^2}{ab\left(a+b\right)}}+\sqrt{\frac{b^2+c^2}{bc\left(b+c\right)}}+\sqrt{\frac{c^2+a^2}{ca\left(c+a\right)}}\le\frac{1}{3}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\)
Câu 4: Cho đường tròn (O) có đường kính BC, A là điểm nằm ngoài đường tròn (O) sao cho tam giác ABC có 3 góc nhọn. AB cắt đường tròn (O) tại F, AC đường tròn (O) tại E. Gọi H là trực tâm tam giác ABC, N là trung điểm AH, AH cắt BC tại D, NB cắt đường tròn (O) tại điểm thứ hai là M. Gọi K, L lần lượt là giao điểm AH với ME và MC.
a) Chứng minh: E, L, F thẳng hàng
b) Vẽ đường tròn (OQX) cắt OE tại Y với X,I,Q là giao điểm của đường thẳng qua H song song với ME và OF, NF,MC. Trên tia QY lấy điểm T sao cho QT=MK. Kẻ HT cắt NS tại J. Chứng minh tứ giác NJIH nội tiếp.
Câu 5: Cho m và n là hai số nguyên dương nguyên tố cùng nhau. Chứng minh tồn tại hai số nguyên dương x,y không vượt quá \(\sqrt{m}\) sao cho \(n^2x^2-y^2\)chia hết cho m.
Hết!
Câu giải pt này! 2 câu hình kia thì câu c dùng định lý đảo của góc tạo bởi tia tiếp tuyến và dây cung, câu d t ko biết làm
pt đã cho \(\Leftrightarrow\sqrt{x-1}+2\sqrt{x+2}=x+3\) (đk: \(x\ge1\))
\(\Leftrightarrow x-1+4\sqrt{\left(x-1\right)\left(x+2\right)}+4x+8=x^2+6x+9\)
\(\Leftrightarrow4\sqrt{x^2+x-2}=x^2+x+2\)
Đặt \(x^2+x-2=t\left(t\ge0\right)\), khi đó pt
\(\Leftrightarrow4\sqrt{t}=t+4\)
\(\Leftrightarrow16t=t^2+8t+16\)
\(\Leftrightarrow t^2-8t+16=0\)
\(\Leftrightarrow\left(t-4\right)^2=0\)
\(\Leftrightarrow t=4\left(thỏa mãn\right)\) \(\Leftrightarrow x^2+x-2=4\)
\(\Leftrightarrow x^2+x-6=0\) \(\Leftrightarrow\left(x-2\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\left(thỏa mãn\right)\\x=-3\left(loại\right)\end{matrix}\right.\)
Vậy pt đã cho có nghiệm x=2
ms đầu t còn đặt lun k biến đổi.....nhưng éo ra..sau giải pt bậc 4...lm mí bài này đi....trg bài kt có đấy