Cho tập hợp :
\(A=\left\{1;2;3\right\}\)
Trong các cách viết sau, cách viết nào đúng, cách viết nào sai ?
\(1\in A\) \(\left\{1\right\}\in A\) \(3\subset A\) \(\left\{2;3\right\}\subset A\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) A ∪ B = (-∞; 15)
A ∩ B = [-2; 3)
b) Để A ⊂ B thì:
m - 1 > -2 và m + 4 ≤ 3
*) m - 1 > -2
m > -2 + 1
m > -1
*) m + 4 ≤ 3
m ≤ 3 - 4
m ≤ -1
Vậy không tìm được m thỏa mãn đề bài
1.A có 8 phần tử đó là các phần tử 0;1;2;3;4;5;6;7, 3 số \(\notin\)A là -1;-2;-3
\(\left\{1\right\};\left\{a\right\};\left\{b\right\};\left\{2\right\}\)
Các tập hợp con của A là:
{1};{a}; {b}; {2}; {1;a}; {1;b}; {1;2}; {a;b}; {a;2}; {b;2}; {1;a;b}; {a;b;2}
a, A có \(\left(201-9\right):3+1=65\left(phần.tử\right)\)
\(B=A\) nên cũng có 65 phần tử
b, \(C=A\cap B=\left\{9;12;15;...;201\right\}\)
\(C=\left\{x\in N|x⋮3;9\le x\le201\right\}\)
Nguyễn Hữu Quang
Gọi 4 tập con của M là : a , b, c, d
M có các tập con có 3 phần tử là :
{ a , b ,c }
{ a , b , d }
{ a , c , d }
{ b ,c ,d }
- Chúc bạn học tốt
1 ___ M có 4 tập hợp nha bạn
2 A có 20 tập hợp con nha bạn
1/ B={x ∈ R| (9-x2)(x2-3x+2)=0}
Ta có:
(9-x2)(x2-3x+2)=0
⇔\(\left[{}\begin{matrix}9-x^2=0\\x^2-3x+2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(3+x\right)\left(3-x\right)=0\\\left(x^2-x\right)-\left(2x-2\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\pm3\\x\left(x-1\right)-2\left(x-1\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\pm3\\\left(x-1\right)\left(x-2\right)=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\pm3\\x=1\\x=2\end{matrix}\right.\)
⇒B={-3;1;2;3}
2/ Có 15 tập hợp con có 2 phần tử
\(A=\left(-3;-1\right)\cup\left(1;2\right)\)
\(B=\left(-1;+\infty\right)\)
\(C=\left(-\infty;2m\right)\)
\(A\cap B=\left(-3;-1\right)\)
Để \(A\cap B\cap C\ne\varnothing\Leftrightarrow2m\ge-1\)
\(\Leftrightarrow m\ge-\dfrac{1}{2}\)
Vậy \(m\ge-\dfrac{1}{2}\) thỏa đề bài
Lời giải:
\(\frac{1}{|x-1|}>2\Leftrightarrow \left\{\begin{matrix} |x-1|\neq 0\\ |x-1|< \frac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} x\neq 1\\ \frac{-1}{2}< x-1< \frac{1}{2}\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\neq 1\\ \frac{1}{2}< x< \frac{3}{2}\end{matrix}\right.\)
\(\Rightarrow A=(\frac{1}{2}; \frac{3}{2})\setminus \left\{1\right\}\)
\(\Rightarrow R\setminus A=(-\infty;\frac{1}{2}]\cup [\frac{3}{2};+\infty)\cup \left\{1\right\}\)
Hình:
1∈A đúng, {2;3}⊂A đúng
{1}∈A sai,3⊂A sai
đúng;đúng;sai;sai