Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
\(|x-1|>3\Leftrightarrow \left[\begin{matrix} x-1>3\\ x-1< -3\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x>4\\ x< -2\end{matrix}\right.\)
\(\Rightarrow A=\left\{x\in\mathbb{R}|x\in (4;+\infty) \text{hoặc }x\in (-\infty;-2)\right\}\)
\(|x+2|< 5\Leftrightarrow -5< x+2< 5\Leftrightarrow -7< x< 3\Leftrightarrow x\in (-7;3)\)
\(\Rightarrow B=\left\{x\in\mathbb{R}|x\in (-7;3)\right\}\)
Do đó: \(A\cap B=\left\{\in\mathbb{R}|x\in (-7;-2)\right\}\)
Bài 2:
\(2< |x|\Leftrightarrow \left[\begin{matrix} x>2\\ x< -2\end{matrix}\right.(1)\)
\(|x|< 3\Leftrightarrow -3< x< 3(2)\)
Từ (1);(2) suy ra để $2< |x|< 3$ thì: \(\left[\begin{matrix} 2< x< 3\\ -3< x< -2\end{matrix}\right.\)
\(\Leftrightarrow \left[\begin{matrix} x\in (2;3)\\ x\in (-3;-2)\end{matrix}\right.\)
Biểu diễn A qua hợp các khoảng:
\(A=(-3;-2)\cup (2;3)\)
a) (\(-2;3\)]
b) \(\left(-15;14\right)\)
c) \(\left(0;5\right)\)
d) (\(-\infty;4\)] \(\cup\) [\(1;+\infty\))
2/|1-x|>=3
=>(2-3|x-1|)/|x-1|>=0
=>2-3|x-1|>=0
=>3|x-1|<=2
=>|x-1|<=2/3
=>-2/3<=x-1<=2/3
=>1/3<=x<=5/3
A=[1/3;5/3]
|x+1|=2
=>x+1=2 hoặc x+1=-2
=>x=1 hoặc x=-3
B={1;-3}
A=[1/3;5/3]
A giao B={1}
A giao B=[1/3;5/3] hợp {-3}
A\B=[1/3;5/3]\{1}
a) (\(-\infty;0\)] \(\cup\left[1;2\right]\cup\) [\(3;+\infty\))
b) (\(-\infty;4\)] \(\cup\) [\(5;+\infty\))
c) \(\left(-2;1\right)\cup\left(3;7\right)\)
d) (\(-1;1\)] \(\cup\) [\(4;5\))
a: A=(-7/4; -1/2]
\(B=\left(-\dfrac{9}{2};-4\right)\cup\left(4;\dfrac{9}{2}\right)\)
\(C=\left(\dfrac{2}{3};+\infty\right)\)
b: \(\left(A\cap B\right)\cap C=\varnothing\)
\(\left(A\cup C\right)\cap\left(B\A\right)\)
\(=(-\dfrac{7}{4};-\dfrac{1}{2}]\cup\left(\dfrac{2}{3};+\infty\right)\cap\left[\left(-\dfrac{9}{2};-4\right)\cup\left(4;\dfrac{9}{2}\right)\right]\)
\(=\left(4;\dfrac{9}{2}\right)\)
a) Tập xác định của f(x) :
A = {x ∈ R | x2 + 3x + 4 ≥ 0 và -x2 + 8x – 15 ≥ 0}
- x2 + 3x + 4 có biệt thức Δ = 32 – 16 < 0
Theo định lí dấu của tam thức:
x2 + 3x + 4 ≥ 0 ∀x ∈R
-x2 + 8x – 15 = 0 ⇔ x1 = 3, x2 = 5
-x2 + 8x – 15 > 0 ⇔ 3 ≤ x ≤ 5 ⇒ A = [3, 5]
b) A/B = [3, 4]
R\(A\B) = (-∞, 3) ∪ (4, +∞)
Lời giải:
\(\frac{1}{|x-1|}>2\Leftrightarrow \left\{\begin{matrix} |x-1|\neq 0\\ |x-1|< \frac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} x\neq 1\\ \frac{-1}{2}< x-1< \frac{1}{2}\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\neq 1\\ \frac{1}{2}< x< \frac{3}{2}\end{matrix}\right.\)
\(\Rightarrow A=(\frac{1}{2}; \frac{3}{2})\setminus \left\{1\right\}\)
\(\Rightarrow R\setminus A=(-\infty;\frac{1}{2}]\cup [\frac{3}{2};+\infty)\cup \left\{1\right\}\)
Hình: