K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 5 2017

-Ta có: √29 > √25 =5
√3 > 1
√2003 >√1936 =44
-Cộng từng vế của ba bất đẳng thức ta được
√29 + √3 + √2003 > 1+5 +44 = 50

-Vậy √29 + √3 + √2003 = 50

16 tháng 5 2017

\(\sqrt{29}+\sqrt{3}+\sqrt{2003}>\sqrt{25}+\sqrt{1}+\sqrt{1936}=5+1+44=50\)

2 tháng 11 2018

\(\sqrt{29}>\sqrt{25}\)= 5
\(\sqrt{3}>1\)
\(\sqrt{2003}>\sqrt{1936}=44\)
Cộng từng vế của ba bất đẳng thức ta được 
\(\sqrt{29}+\sqrt{3}+\sqrt{2003}\) > 1+5 +44 = 50

2 tháng 11 2018

\(\sqrt{29}>\sqrt{25}=5\)

\(\sqrt{3}>\sqrt{1}=1\)

\(\sqrt{2003}>\sqrt{1936}=44\)

\(=>\sqrt{29}+\sqrt{3}+\sqrt{2003}>5+1+44=50\)

22 tháng 10 2015

\(\sqrt{29}+\sqrt{3}+\sqrt{2003}>\sqrt{25}+\sqrt{1}+\sqrt{1936}=5+1+44=50\)

\(\text{Vậy }\sqrt{29}+\sqrt{3}+\sqrt{2003}>50\)

22 tháng 10 2015

 

\(\sqrt{29}+\sqrt{3}+\sqrt{2013}>\sqrt{25}+\sqrt{1}+\sqrt{1936}=5+1+44=50\)

 

NV
4 tháng 8 2021

\(\sqrt{2004}-\sqrt{2003}=\dfrac{1}{\sqrt{2004}+\sqrt{2003}}\)

\(\sqrt{2006}-\sqrt{2005}=\dfrac{1}{\sqrt{2006}+\sqrt{2005}}\)

Mà \(\sqrt{2004}+\sqrt{2003}< \sqrt{2006}< \sqrt{2005}\)

\(\Rightarrow\dfrac{1}{\sqrt{2004}+\sqrt{2003}}>\dfrac{1}{\sqrt{2006}+\sqrt{2005}}\)

\(\Rightarrow\sqrt{2004}-\sqrt{2003}>\sqrt{2006}-\sqrt{2005}\)

8 tháng 9 2015

\(\sqrt{29}+\sqrt{3}+\sqrt{2015}>\sqrt{25}+\sqrt{1}+\sqrt{1936}\)\(=5+1+44=50\)

\(\text{Vậy }\sqrt{29}+\sqrt{3}+\sqrt{2015}>50\)

8 tháng 9 2015

50 bé hơn

đúng 100%

18 tháng 10 2019

Căn bậc haiCăn bậc hai

ta có

3 tháng 8 2023

\(A=\sqrt[]{50}+\sqrt[]{65}\Rightarrow A^2=50+65+2\sqrt[]{50.65}=115+2\sqrt[]{5.10.5.13=}115+10\sqrt[]{130}\left(1\right)\)

\(B=\sqrt[]{15}+\sqrt[]{115}\Rightarrow B^2=15+115+2\sqrt[]{15.115}=15+115+2\sqrt[]{3.5.5.23}=15+115+10\sqrt[]{69}\left(2\right)\)Ta có  \(10\sqrt[]{130}< 10\sqrt[]{69.2}=10\sqrt[]{2}\sqrt[]{69}< 15+10\sqrt[]{69}\left(3\right)\)

\(\left(1\right),\left(2\right),\left(3\right)\Rightarrow A^2< B^2\Rightarrow A< B\)

\(\Rightarrow\sqrt[]{50}+\sqrt[]{65}< \sqrt[]{15}+\sqrt[]{115}\)

3 tháng 8 2023

So sánh gì thế em, em nhập đủ đề vào hi

3 tháng 7 2017

Áp dụng BĐT CAuchy-Schwarz ta có:

Đặt \(A^2=\left(\sqrt{2003}+\sqrt{2005}\right)^2\)

\(\le\left(1+1\right)\left(2003+2005\right)\)

\(=2\cdot4008=8016\)

\(\Rightarrow A^2\le8016\Rightarrow A\le2\sqrt{2004}=B\)

3 tháng 7 2017

MÌNH LỚP 7 NHƯNG TRẢ LỜI ĐƯỢC LÈ

a) Ta có :\(\left(\sqrt{2}+\sqrt{3}\right)^2=2+3+2\sqrt{2}\cdot\sqrt{3}=5+2\sqrt{6}>5=\left(\sqrt{5}\right)^2\)

\(\Rightarrow\left(\sqrt{2}+\sqrt{3}\right)^2>\left(\sqrt{5}\right)^2\Leftrightarrow\sqrt{2}+\sqrt{3}>\sqrt{5}\)

30 tháng 6 2019

a) \(\sqrt{2}+\sqrt{3}>\sqrt{5}\)

b) \(\sqrt{2003}+\sqrt{2005}< 2.\sqrt{2004}\)

HOK TOT

28 tháng 6 2017

\(\sqrt{2003}\)\(+\)\(\sqrt{2004}\)\(>\)\(2\)\(\sqrt{2004}\)

k mik nhaavt111329_60by60.jpg

28 tháng 6 2017

Đặt \(A^2=\left(\sqrt{2003}+\sqrt{2004}\right)^2>0\)

\(\le\left(1+1\right)\left(2003+2004\right)=2\cdot4007=8014\)

\(\Rightarrow A^2\le8014\). Và 

\(B^2=\left(2\sqrt{2004}\right)^2=4\cdot2004=8016\)

Suy ra \(A^2\le8014< 8016=B^2\Leftrightarrow A< B\)