\(\sqrt{2003}+\sqrt{2004}\) và \(2\sqrt{2004}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 6 2017

\(\sqrt{2003}\)\(+\)\(\sqrt{2004}\)\(>\)\(2\)\(\sqrt{2004}\)

k mik nhaavt111329_60by60.jpg

28 tháng 6 2017

Đặt \(A^2=\left(\sqrt{2003}+\sqrt{2004}\right)^2>0\)

\(\le\left(1+1\right)\left(2003+2004\right)=2\cdot4007=8014\)

\(\Rightarrow A^2\le8014\). Và 

\(B^2=\left(2\sqrt{2004}\right)^2=4\cdot2004=8016\)

Suy ra \(A^2\le8014< 8016=B^2\Leftrightarrow A< B\)

3 tháng 7 2017

Áp dụng BĐT CAuchy-Schwarz ta có:

Đặt \(A^2=\left(\sqrt{2003}+\sqrt{2005}\right)^2\)

\(\le\left(1+1\right)\left(2003+2005\right)\)

\(=2\cdot4008=8016\)

\(\Rightarrow A^2\le8016\Rightarrow A\le2\sqrt{2004}=B\)

3 tháng 7 2017

MÌNH LỚP 7 NHƯNG TRẢ LỜI ĐƯỢC LÈ

25 tháng 9 2016

\(\sqrt{2003}\)+\(\sqrt{2005}\)<2\(\sqrt{2004}\)

26 tháng 9 2016

ta có :\(\left(\sqrt{2005}+\sqrt{2003}\right)^2\le\left(1^2+1^2\right)\left(2005+2003\right)=2.4008\)(bđt bu-nhia-cop xki)

\(\left(2\sqrt{2004}\right)^2=4.2004=2.4008\)

\(\sqrt{2003}+\sqrt{2005}< 2\sqrt{2004}\)

22 tháng 10 2017

Ta có : \(\sqrt{2005}-\sqrt{2004}\) ; \(\sqrt{2004}-\sqrt{2003}\)

=> \(\sqrt{2005}>\sqrt{2004}>\sqrt{2003}\)

=> \(\sqrt{2005}-\sqrt{2004}\)\(\sqrt{2004}-\sqrt{2003}\)

13 tháng 2 2020

\(\sqrt{2005}-\sqrt{2004}=0.01116778328\)

\(\sqrt{2004}-\sqrt{2003}=0.01117057\)

\(\Rightarrow\sqrt{2005}-\sqrt{2004}>\sqrt{2004}-\sqrt{2003}\)

a) Ta có :\(\left(\sqrt{2}+\sqrt{3}\right)^2=2+3+2\sqrt{2}\cdot\sqrt{3}=5+2\sqrt{6}>5=\left(\sqrt{5}\right)^2\)

\(\Rightarrow\left(\sqrt{2}+\sqrt{3}\right)^2>\left(\sqrt{5}\right)^2\Leftrightarrow\sqrt{2}+\sqrt{3}>\sqrt{5}\)

30 tháng 6 2019

a) \(\sqrt{2}+\sqrt{3}>\sqrt{5}\)

b) \(\sqrt{2003}+\sqrt{2005}< 2.\sqrt{2004}\)

HOK TOT

14 tháng 8 2016

Áp dụng bđt \(\frac{\sqrt{a}+\sqrt{b}}{2}< \sqrt{\frac{a+b}{2}}\) (bạn tự c/m) với a = 2003 , b = 2005

được : \(\frac{\sqrt{2003}+\sqrt{2005}}{2}< \sqrt{\frac{2003+2005}{2}}\)

\(\Rightarrow\sqrt{2003}+\sqrt{2005}< 2\sqrt{2004}\)

18 tháng 8 2019

Giả sử: \(\sqrt{2005}-\sqrt{2004}\le\sqrt{2004}-\sqrt{2003}\)

\(\Leftrightarrow\sqrt{2005}+\sqrt{2003}\le2\sqrt{2004}\)

\(\Leftrightarrow\left(\sqrt{2005}+\sqrt{2003}\right)^2\le\left(2\sqrt{2004}\right)^2\)

\(\Leftrightarrow2005+2\sqrt{2005.2003}+2003\le4.2004\)

\(\Leftrightarrow4008+2\sqrt{\left(2004+1\right)\left(2004-1\right)}\le4008+4008\)

\(\Leftrightarrow2\sqrt{2004^2-1}\le4008\)

\(\Leftrightarrow\sqrt{2004^2-1}\le2004\)

\(\Leftrightarrow\sqrt{2004^2-1}\le\sqrt{2004^2}\)

Vậy giả sử đúng

\(\Rightarrow\sqrt{2005}-\sqrt{2004}\le\sqrt{2004}-\sqrt{2003}\)

18 tháng 8 2019

dùng sai dấu rồi ạ :)) dùng dấu <  thay cho dấu  ≤  nhé

18 tháng 10 2019

Căn bậc haiCăn bậc hai

ta có

14 tháng 6 2017

Ta có

\(\sqrt{2005}-\sqrt{2004}=\dfrac{1}{\sqrt{2005}+\sqrt{2004}}\)

\(\sqrt{2004}-\sqrt{2003}=\dfrac{1}{\sqrt{2004+\sqrt{2003}}}\)

Quy về so sánh

\(\dfrac{1}{\sqrt{2005}+\sqrt{2004}}\) với \(\dfrac{1}{\sqrt{2004}+\sqrt{2003}}\)

Khi đó ,ta thấy ngay ở biểu thức thứ nhất lớn hơn mẫu ở biểu thức thứ hai ,các số này đều dương nên suy ra

\(\sqrt{2005}-\sqrt{2004}< \sqrt{2004}-\sqrt{2003}\)

27 tháng 6 2017

kết quả hơi kì bạn ơi

19 tháng 6 2015

\(\left(\sqrt{2003}+\sqrt{2005}\right)^2=2003+2005+2\sqrt{2003.2005}=4008+2\sqrt{2003.2005}\)

\(\left(2\sqrt{2004}\right)^2=4.2004=2.2004+2.2004=4008+2.2004\)

TA có 2003.2005 = (2004 -1 )(2004 + 1 ) = 2004 ^2 - 1 <2004 ^2

=> 2003 . 2005 < 2004^2 =>\(\sqrt{2003.2005}<\sqrt{2004^2}\) hay \(\sqrt{2003.2005}<2004\)

=>  \(2.\sqrt{2003.2005}<2.2004\Rightarrow4008+2\sqrt{2003.2005}<4008+2.2004\) 

=>\(\sqrt{4008+2\sqrt{2003.2005}}<\sqrt{4008+2.2004}\)

Hay \(\sqrt{2003}+\sqrt{2005}<2\sqrt{2004}\) 

=> A< B

 

19 tháng 6 2015

Ta có:20042-1<20044

=>2003.2005<20042

=>2\(\sqrt{2003.2005}\)<2.2004

Do 2003+2005=2004+2004

=>2003+2\(\sqrt{2003.2005}\)+2005<2004+2.2004+2004

=>\(\left(\sqrt{2003}+\sqrt{2005}\right)^2<\left(\sqrt{2004}+\sqrt{2004}\right)^2\)

=>\(\sqrt{2003}+\sqrt{2005}<2\sqrt{2004}\)