K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 5 2017

Ta có: \(\left(4x-3\right)^4=\left(4x-3\right)^2\)

\(\Leftrightarrow\left(4x-3\right)^2\left[\left(4x-3\right)^2-1\right]=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left(4x-3\right)^2=0\\\left(4x-3\right)^2-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}4x-3=\pm0\\4x-3=\pm1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}4x=3\\4x=4\\4x=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{4}\\x=1\\x=\dfrac{1}{2}\end{matrix}\right.\)

Vậy \(x=\dfrac{3}{4}\) hoặc \(x=1\) hoặc \(x=\dfrac{1}{2}\)

9 tháng 5 2017

huhu

2 tháng 2 2021

1.

\(x^4-6x^2-12x-8=0\)

\(\Leftrightarrow x^4-2x^2+1-4x^2-12x-9=0\)

\(\Leftrightarrow\left(x^2-1\right)^2=\left(2x+3\right)^2\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-1=2x+3\\x^2-1=-2x-3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-2x-4=0\\x^2+2x+2=0\end{matrix}\right.\)

\(\Leftrightarrow x=1\pm\sqrt{5}\)

2 tháng 2 2021

3.

ĐK: \(x\ge-9\)

\(x^4-x^3-8x^2+9x-9+\left(x^2-x+1\right)\sqrt{x+9}=0\)

\(\Leftrightarrow\left(x^2-x+1\right)\left(\sqrt{x+9}+x^2-9\right)=0\)

\(\Leftrightarrow\sqrt{x+9}+x^2-9=0\left(1\right)\)

Đặt \(\sqrt{x+9}=t\left(t\ge0\right)\Rightarrow9=t^2-x\)

\(\left(1\right)\Leftrightarrow t+x^2+x-t^2=0\)

\(\Leftrightarrow\left(x+t\right)\left(x-t+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-t\\x=t-1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\sqrt{x+9}\\x=\sqrt{x+9}-1\end{matrix}\right.\)

\(\Leftrightarrow...\)

21 tháng 5 2021

thứ nhất bn đăng sai môn 

thứ hai bn giải r đăng lmj :???

11 tháng 10 2021

Thứ nhất đang sai môn 

Thứ hai không biết giải fndf]-0jhdfuhiofghjfgoihjfgopihjfgihjohjgo;hjghghgdjhldhjdfighjs;dligjlkdfgjdhfghfgh41fg6j541fg3j5h4gf6j54dgh65gf4654j

5gj5fg

35j4gh

6jfd4

5j4fj

AH
Akai Haruma
Giáo viên
29 tháng 6 2023

Lời giải:

a. $\sqrt{x^2}=1$

$\Leftrightarrow |x|=1$

$\Leftrightarrow x=\pm 1$

b. $\sqrt{4x^2-4x+1}=3$

$\Leftrightarrow \sqrt{(2x-1)^2}=3$
$\Leftrightarrow |2x-1|=3$

$\Leftrightarrow 2x-1=\pm 3$

$\Leftrightarrow x=-1$ hoặc $x=2$

3. ĐKXĐ: $x^2\geq 4$

$\sqrt{x^2-4}+\sqrt{x^2+4x+4}=0$

Do $\sqrt{x^2-4}\geq 0; \sqrt{x^2+4x+4}\geq 0$ với mọi $x\in$ ĐKXĐ nên để tổng của chúng bằng $0$ thì:

$\sqrt{x^2-4}=\sqrt{x^2+4x+4}=0$

$\Leftrightarrow (x-2)(x+2)=(x+2)^2=0$

$\Leftrightarrow x=-2$

4. 

PT \(\Leftrightarrow \left\{\begin{matrix} x-3\geq 0\\ x^2-4x+3=(x-3)^2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq 3\\ x^2-4x+3=x^2-6x+9\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} x\geq 3\\ 2x=6\end{matrix}\right.\Leftrightarrow x=3\)

29 tháng 6 2023

Ý 1:

\(\sqrt{x^2}=1\\ \Leftrightarrow\left|x\right|=1\\ Vậy:x=1.hoặc.x=-1\\ S=\left\{\pm1\right\}\)

Ý 2:

\(\sqrt{4x^2-4x+1}=3\\ \Leftrightarrow\sqrt{\left(2x-1\right)^2}=3\\ \Leftrightarrow\left|2x-1\right|=3\\ \Leftrightarrow\left[{}\begin{matrix}2x-1=3\\2x-1=-3\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\\ Vậy:S=\left\{-1;2\right\}\)

13 tháng 7 2018

a) x^2+4x+3=x^2+x+3x+3=x(x+1)+3(x+1)=(x+1)(x+3)

b) 4x^2+4x-3=4x^2+4x+1-4=(2x+1)^2-4=(2x+1-2)(2x+1+2)=(2x-1)(2x+3)

c) x^2-x-12=x^2-4x+3x-12=x(x-4)+3(x-4)=(x-4)(x+3)

d) 4x^4+4x^2y^2-8y^4=4(x^4+x^2y^2-2y^4)=4(x^4-x^2y^2+2x^2y^2-2y^4)=4(x^2-y^2)(x^2+2y^2)=4(x-y)(x+y)(x^2+2y^2)

13 tháng 7 2018

a) \(x^2+4x+3\)

\(=x^2+x+3x+3\)

\(=\left(x^2+x\right)+\left(3x+3\right)\)

\(=x\left(x+1\right)+3\left(x+1\right)\)

\(=\left(x+1\right)\left(x+3\right)\)

c) \(x^2-x-12\)

\(=x^2-4x+3x-12\)

\(=\left(x^2-4x\right)+\left(3x-12\right)\)

\(=x\left(x-4\right)+3\left(x-4\right)\)

\(=\left(x-4\right)\left(x+3\right)\)

24 tháng 11 2021

\(a,=16x^8+8x^6\\ b,=4x^4-6x^5-4x^3\\ c,=15x^6+9x^3y-10x^3y-6y^2\\ =15x^6-x^3y-6y^2\\ d,=2a^4-a^3b+6a^2b-3ab^2-3ab^2+b^3\\ =2a^4-a^3b+6a^2b-6ab^2+b^3\)

17 tháng 6 2018

a, \(x^2+4x+3=x^2+x+3x+3=x\left(x+1\right)+3\left(x+1\right)=\left(x+3\right)\left(x+1\right)\)

b, \(4x^2+4x-3=\left(2x\right)^2+2.2x+1-4=\left(2x+1\right)^2-2^2=\left(2x+1-2\right)\left(2x+1+2\right)=\left(2x-1\right)\left(2x+3\right)\)

c, \(x^2-x-12=x^2-x+\dfrac{1}{4}-\dfrac{49}{4}=\left(x-\dfrac{1}{2}\right)^2-\left(\dfrac{7}{2}\right)^2=\left(x-\dfrac{1}{2}-\dfrac{7}{2}\right)\left(x-\dfrac{1}{2}+\dfrac{7}{2}\right)=\left(x-4\right)\left(x+3\right)\)

d, \(4x^4+4x^2y^2-8y^4=\left(2x^2\right)^2+2.2x^2y^2+\left(y^2\right)^2-9y^4=\left(2x^2+y^2\right)^2-\left(3y^2\right)^2=\left(2x^2+y^2-3y^2\right)\left(2x^2+y^2+3y^2\right)=\left(2x^2-2y^2\right)\left(2x^2+4y^2\right)=4\left(x+y\right)\left(x-y\right)\left(x^2+2y^2\right)\)

\(a/\)

\(4x-4y+x^2-2xy+y^2\)

\(=\left(4x-4y\right)+\left(x^2-2xy+y^2\right)\)

\(=4\left(x-y\right)+\left(x-y\right)^2\)

\(=\left(x-y\right)\left(4+x-y\right)\)

\(b/\)

\(x^4-4x^3-8x^2+8x\)

\(=\left(x^4+8x\right)-\left(4x^3+8x^2\right)\)

\(=x\left(x^3+8\right)-4x^2\left(x+2\right)\)

\(=x\left(x+2\right)\left(x^2-2x+4\right)-4x^2\left(x+2\right)\)

\(=x\left(x+2\right)\left(x^2-2x+4-4x\right)\)

\(=x\left(x+2\right)\left(x^2-6x-4\right)\)

\(d/\)

\(x^4-x^2+2x-1\)

\(=x^4-\left(x-1\right)^2\)

\(=\left(x^2+x-1\right)\left(x^2-x+1\right)\)

\(e/\)(Xem lại đề)

\(x^4+x^3+x^2+2x+1\)

\(=\left(x^4+x^3\right)+\left(x^2+2x+1\right)\)

\(=x^3\left(x+1\right)+\left(x+1\right)^2\)

\(=\left(x+1\right)\left(x^3+x+1\right)\)

\(f/\)

\(x^3-4x^2+4x-1\)

\(=x\left(x^2-4x+4\right)-1^2\)

\(=x\left(x-2\right)^2-1\)

\(=[\sqrt{x}\left(x-2\right)]^2-1\)

\(=[\sqrt{x}\left(x-2\right)-1][\sqrt{x}\left(x-2\right)+1]\)

\(c/\)

\(x^3+x^2-4x-4\)

\(=\left(x^3-2x^2\right)+\left(3x^2-6x\right)+\left(2x-4\right)\)

\(=x^2\left(x-2\right)+3x\left(x-2\right)+2\left(x-2\right)\)

\(=\left(x-2\right)\left(x^2+3x+2\right)\)

\(=\left(x-2\right)[\left(x^2+x\right)+\left(2x+2\right)]\)

\(=\left(x-2\right)\left(x+1\right)\left(x+2\right)\)

15 tháng 3 2021

\(PT\Leftrightarrow x^5-1=4\left(x^4+x^3+x^2+x+1\right)\)

\(\Leftrightarrow\left(x-1\right)\left(x^4+x^3+x^2+x+1\right)=4\left(x^4+x^3+x^2+x+1\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=4\\x^4+x^3+x^2+x+1=0\end{matrix}\right.\).

Nếu \(x^4+x^3+x^2+x+1=0\Rightarrow\left(x-1\right)\left(x^4+x^3+x^2+x+1\right)=0\Leftrightarrow x^5-1=0\Leftrightarrow x^5=1\Leftrightarrow x=1\). Thử lại ta thấy không thoả mãn.

Do đó ta có \(x-1=4\Leftrightarrow x=5\).

Vậy...

.

15 tháng 3 2021

mình cảm ơn bạn nhé 

 

 

 

 

16 tháng 8 2020

Đặt: \(\sqrt{2x+1}=a,\sqrt{3-2x}=b\)

Từ đó: \(\sqrt{4x-4x^2+3}=ab\)và \(4=a^2+b^2\)

Từ đó biến đổi và giải phương trình. Đây là một cách. (T chưa giải ra :V)

16 tháng 8 2020

Hoặc là không cần đặt ẩn phụ, biến đổi luôn:

VT=\(\frac{\left(2x-1\right)^2.\left(2x+1\right)\left(3-2x\right)}{\left(2x+1\right)+\left(3-2x\right)}\)

VP=\(\sqrt{2x+1}+\sqrt{3-2x}+2\sqrt{2x+1}.\sqrt{3-2x}+\left(\sqrt{2x+1}\right)^2+\left(\sqrt{3-2x}\right)^2\)

=\(\left(\sqrt{2x+1}+\sqrt{3x+2}\right)\left(\sqrt{2x+1}+\sqrt{3x+2}+1\right)\)

Đến đây có vẻ đơn giản r :>