K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 5 2017

Ta có: \(m=\dfrac{a}{3}+\dfrac{a^2}{2}+\dfrac{a^3}{6}\)

\(\Leftrightarrow m=\dfrac{2a+3a^2+a^3}{6}\) (quy đồng VP)

\(\Leftrightarrow m=\dfrac{a\left(2+3a+a^2\right)}{6}=\dfrac{a\left(a+1\right)\left(a+2\right)}{6}\) (*)

Vì a là số nguyên nên: \(a\left(a+1\right)\left(a+2\right)⋮6\) (tích của 3 số nguyên liên tiếp sẽ có 1 số chia hết cho 3 và 1 số chia hết cho 2) (**)

Từ (*);(**) suy ra m là số nguyên

10 tháng 5 2017

Thank you verry much!!!

AH
Akai Haruma
Giáo viên
26 tháng 12 2023

Lời giải:

Với $a,b,c>0$ ta có:

$M> \frac{a}{a+b+c}+\frac{b}{b+c+a}+\frac{c}{c+a+b}=\frac{a+b+c}{a+b+c}{a+b+c}=1(*)$

Mặt khác:
Xét hiệu: $\frac{a}{a+b}-\frac{a+c}{a+b+c}=\frac{-bc}{(a+b)(a+b+c)}<0$ với mọi $a,b,c>0$

$\Rightarrow \frac{a}{a+b}< \frac{a+c}{a+b+c}$

Tương tự ta cũng có: $\frac{b}{b+c}< \frac{b+a}{a+b+c}; \frac{c}{c+a}< \frac{c+b}{a+b+c}$

Cộng lại ta được: $M< \frac{a+c+b+a+c+b}{a+b+c}=\frac{2(a+b+c)}{a+b+c}=2(**)$

Từ $(*); (**)\Rightarrow 1< M< 2$ nên $M$ không là số nguyên.

27 tháng 8 2023

A = \(\dfrac{3n+1}{2n+3}\) (n \(\ne\) - \(\dfrac{3}{2}\))

\(\in\) Z ⇔ 3n + 1 ⋮ 2n + 3

             6n + 2 ⋮ 2n + 3

         6n + 9 - 7 ⋮ 2n + 3

    3.(2n + 3) - 7 ⋮ 2n + 3

                      7 ⋮ 2n + 3 ⇒ 2n + 3 \(\in\) Ư(7) = { -7; -1; 1; 7}

Lập bảng ta có: 

2n+3 -7 -1 1 7
n -5 -2 -1 2

Vậy các số nguyên n thỏa mãn đề bài là:

\(\in\) { -5; -2; -1; 2}

            

27 tháng 8 2023

\(A=\dfrac{3n+1}{2n+3}\inℤ\) \(\left(n\ne-\dfrac{3}{2}\right)\)

\(\Rightarrow3n+1⋮2n+3\)

\(\Rightarrow2\left(3n+1\right)-3\left(2n+3\right)⋮2n+3\)

\(\Rightarrow6n+2-6n-9⋮2n+3\)

\(\Rightarrow-7⋮2n+3\)

\(\Rightarrow2n+3\in\left\{-1;1;-7;7\right\}\)

\(\Rightarrow n\in\left\{-2;-1;-5;2\right\}\)

22 tháng 4 2023

a: Gọi d=ƯCLN(15n+1;30n+1)

=>30n+2-30n-1 chia hết cho d

=>1 chia hết cho d

=>Đây là phân số tối giản

b: Gọi d=ƯCLN(3n+2;5n+3)

=>15n+10-15n-9 chia hết cho d

=>1 chia hết cho d

=>d=1

=>Phân số tối giản

23 tháng 2 2023

A = \(\dfrac{2^{2021}+3^{2021}}{2^{2022}+3^{2022}}\)

Gọi ước chung lớn nhất của

22021 + 32021 và 22022+32022 là d (d\(\in\)N*)

Ta có :  \(\left\{{}\begin{matrix}2^{2021}+3^{2021}⋮d\\2^{2022}+3^{2022}⋮d\end{matrix}\right.\) 

⇒           \(\left\{{}\begin{matrix}2.(2^{2021}+3^{2021})⋮d\\2^{2022}+3^{2022}⋮d\end{matrix}\right.\)

Trừ vế với vế ta được 32022 - 2.32021 ⋮ d 

                                ⇒ 32021.( 3 - 2) ⋮ d 

                                ⇒ 32021 ⋮ d 

                              ⇒ d \(\in\){ 1; 3; 32; 33;........32021)

                               nếu d \(\in\) { 3; 32; 33;.....32021) thì 

                      ⇒ 22021 + 32021 ⋮ 3 ⇒ 22021 ⋮ 3 ( vô lý )

               vậy d = 1

Hay phân số A = \(\dfrac{2^{2021}+3^{2021}}{2^{2022}+3^{2022}}\) là phân số tối giản (đpcm)

 

3 tháng 2 2022

1. a) Gọi a là ƯCLN của 2n+5 và n+3.

- Ta có: (n+3)⋮a

=>(2n+6)⋮a

Mà (2n+5)⋮a nên [(2n+6)-(2n+5)]⋮a

=>1⋮a

=>a=1 hay a=-1.

- Vậy \(\dfrac{2n+5}{n+3}\) là phân số tối giản.

b) -Để phân số B có giá trị là số nguyên thì:

\(\left(2n+5\right)⋮\left(n+3\right)\)

=>\(\left(2n+6-1\right)⋮\left(n+3\right)\)

=>\(-1⋮\left(n+3\right)\).

=>\(n+3\inƯ\left(-1\right)\).

=>\(n+3=1\) hay \(n+3=-1\).

=>\(n=-2\) (loại) hay \(n=-4\) (loại).

- Vậy n∈∅.

3 tháng 2 2022

1. a) Gọi `(2n +5 ; n + 3 ) = d`

`=> {(2n+5 vdots d),(n+3 vdots d):}`

`=> {(2n+5 vdots d),(2(n+3) vdots d):}`

`=> {(2n+5 vdots d),(2n+6 vdots d):}`

Do đó `(2n+6) - (2n+5) vdots d`

`=> 1 vdots d`

`=> d = +-1`

Vậy `(2n+5)/(n+3)` là phân số tối giản

b) `B = (2n+5)/(n+3)` ( `n ne -3`)

`B = [2(n+3) -1]/(n+3)`

`B= [2(n+3)]/(n+3) - 1/(n+3)`

`B= 2 - 1/(n+3)`

Để B nguyên thì `1/(n+3)` có giá trị nguyên

`=> 1 vdots n+3`

`=> n+3 in Ư(1) = { 1 ; -1}`

+) Với `n+3 =1 => n = -2`(thỏa mãn điều kiện)

+) Với `n+ 3 = -1 => n= -4` (thỏa mãn điều kiện)

Vậy `n in { -2; -4}` thì `B` có giá trị nguyên

2. Gọi số học sinh giỏi kì `I` của lớp `6A` là `x` (` x in N **`)(học sinh)

Số học sinh còn lại của lớp `6A` là : `7/3 x` (học sinh)

Số học sinh giỏi của lớp `6A` cuối năm là: `x+4` (học sinh)

Cuối năm số học sinh còn lại của lớp `6A` là: `3/2 (x+4)`  (học sinh)

Vì số học sinh của lớp `6A` không đổi nên ta có :

`7/3x + x = 3/2 (x+4) + x+4`

`=> 10/3 x = 3/2 x + 6 + x + 4`

`=> 10/3 x  - 3/2 x -x = 10 `

`=> 5/6x = 10`

`=> x=12` (thỏa mãn điều kiện)

`=>` Số học sinh giỏi kì `I` của lớp `6A` là `12` học sinh

`=>` Số học sinh còn lại của lớp `6A` là : `12 . 7/3 =28` học sinh

`=>` Số học sinh của lớp `6A` là : `28 + 12 = 40` (học sinh)

Vậy lớp `6A` có `40` học sinh

 

\(\dfrac{2}{3}A=\dfrac{2}{3}-\left(\dfrac{2}{3}\right)^2+\left(\dfrac{2}{3}\right)^3-...+\left(\dfrac{2}{3}\right)^{2019}-\left(\dfrac{2}{3}\right)^{2020}\)

=>\(\dfrac{5}{3}A=1-\left(\dfrac{2}{3}\right)^{2020}=1-\dfrac{2^{2020}}{3^{2020}}=\dfrac{3^{2020}-2^{2020}}{3^{2020}}\)

=>\(A=\dfrac{3^{2020}-2^{2020}}{3^{2020}}:\dfrac{5}{3}=\dfrac{3^{2020}-2^{2020}}{5\cdot3^{2019}}\) ko là số nguyên