\(\dfrac{1991.1993-1}{1990+1991.1992}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Ta có: 1.3.5.7...1991.1993 + 2.4.6......1992.1994
= (1.3.5.7.19) . 9.11.....1991.1993 + (3.5.7.19).2.4.2.2.2.2.8....1992.1994
= 1995 . 9.11...1991.1993+1995.2.4.2.2.2.2.8....1992.1994
Vì cả 2 vế đều chia hết cho 1995 nên tổng chia hết cho 1995

\(\dfrac{x-5}{1990}+\dfrac{x-15}{1980}=\dfrac{x-1990}{5}+\dfrac{x-1980}{15}\\ =>\dfrac{x-5}{1990}-1+\dfrac{x-15}{1980}-1=\dfrac{x-1990}{5}-1+\dfrac{x-1980}{15}-1\\ =>\dfrac{x-1995}{1990}+\dfrac{x-1995}{1980}-\dfrac{x-1995}{5}-\dfrac{x-1995}{15}=0\\ =>\left(x-1995\right).\left(\dfrac{1}{1990}+\dfrac{1}{1980}-\dfrac{1}{5}-\dfrac{1}{15}\right)=0\\ =>x-1995=0\\ =>x=1995\)

Giải:
Ta gọi \(\dfrac{10^{1990}+1}{10^{1991}+1}\) =A và \(\dfrac{10^{1991}}{10^{1992}}\) =B
Ta có:
A=\(\dfrac{10^{1990}+1}{10^{1991}+1}\)
10A=\(\dfrac{10^{1991}+10}{10^{1991}+1}\)
10A=\(\dfrac{10^{1991}+1+9}{10^{1991}+1}\)
10A=\(1+\dfrac{9}{10^{1991}+1}\)
Tương tự:
B=\(\dfrac{10^{1991}}{10^{1992}}\)
10B=\(\dfrac{10^{1992}}{10^{1992}}=1\)
Vì \(\dfrac{9}{10^{1991}+1}< 1\) nên 10A<10B
⇒ \(\dfrac{10^{1990}+1}{10^{1991}+1}\) < \(\dfrac{10^{1991}}{10^{1992}}\)

đáng ra là toán lớp 6 đó nhưng mik thích đặt toán lớp 5 :)
A = \(\dfrac{10^{1990}+1}{10^{1991}+1}\) ⇒ 10A = \(\dfrac{10^{1991}+10}{10^{1991}+1}\) = \(1+\dfrac{9}{10^{1991}+1}\)
B = \(\dfrac{10^{1991}+10}{10^{1992}+1}\) ⇒ 10B = \(\dfrac{10^{1992}+10}{10^{1992}+1}\) = 1 + \(\dfrac{9}{10^{1992}+1}\)
Vì \(\dfrac{9}{10^{1991}+1}\) > \(\dfrac{9}{10^{1992}+1}\)
10A > 10B => A > B
Ta có: \(\dfrac{1991.1993-1}{1990+1991.1992}\)
\(=\dfrac{1991\left(1992+1\right)-1}{1991.1992+1990}\)
\(=\dfrac{1991.1992+1991.1-1}{1991.1992+1990}\)
\(=\dfrac{1991.1992+1991-1}{1991.1992+1990}\)
\(=\dfrac{1991.1992+1990}{1991.1992+1990}=1\)
Vậy giá trị của biểu thức là \(1\)