K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 4 2017

Để học tốt Toán 9 | Giải bài tập Toán 9

13 tháng 12 2015

a =1  => A =2\(\sqrt{21}\)

CM đến sang năm

13 tháng 12 2015

bỏ cái căn đi là chứng minh ngon lành ngay ^^

1 tháng 6 2020

ê

1 tháng 6 2020

bởi vì abc là  một số thập phân 

NV
26 tháng 3 2021

Ta sẽ chứng minh:

\(\sqrt{a^2+x^2}+\sqrt{b^2+y^2}\ge\sqrt{\left(a+b\right)^2+\left(x+y\right)^2}\)

Thật vậy, bình phương 2 vế, BĐT tương đương:

\(a^2+x^2+b^2+y^2+2\sqrt{a^2b^2+x^2y^2+a^2y^2+b^2x^2}\ge a^2+b^2+x^2+y^2+2ab+2xy\)

\(\Leftrightarrow\sqrt{a^2b^2+x^2y^2+a^2y^2+b^2x^2}\ge ab+xy\)

\(\Leftrightarrow a^2b^2+x^2y^2+a^2y^2+b^2x^2\ge a^2b^2+x^2y^2+2abxy\)

\(\Leftrightarrow a^2y^2+b^2x^2-2abxy\ge0\)

\(\Leftrightarrow\left(ay-bx\right)^2\ge0\) (luôn đúng)

Áp dụng:

\(VT=\sqrt{a^2+x^2}+\sqrt{b^2+y^2}+\sqrt{c^2+z^2}\)

\(VT\ge\sqrt{\left(a+b\right)^2+\left(x+y\right)^2}+\sqrt{c^2+z^2}\ge\sqrt{\left(a+b+c\right)^2+\left(x+y+z\right)^2}\) (đpcm)

15 tháng 12 2020

\(\sqrt{ab}+\sqrt{cd}\le\sqrt{\left(a+c\right)\left(b+d\right)}\)

\(\Leftrightarrow ab+cd+2\sqrt{abcd}\le ab+bc+cd+da\)

\(\Leftrightarrow bc+da\ge2\sqrt{abcd}\)

\(\Leftrightarrow bc+da-2\sqrt{abcd}\ge0\)

\(\Leftrightarrow\left(\sqrt{bc}-\sqrt{da}\right)^2\ge0\) đúng \(\forall a,b,c,d>0\)

NV
18 tháng 2 2020

Đây là BĐT Mincopxki, bạn chỉ cần bình phương 2 vế 2 lần là xong

25 tháng 6 2019

\(a^2+b^2\ge2ab\Leftrightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)

Khai căn 2 vế

\(\sqrt{2\left(a^2+b^2\right)}\ge\sqrt{\left(a+b\right)^2}=\left|a+b\right|\)

14 tháng 12 2016

\(\frac{\left(a+b\right).2}{\sqrt{a.4.\left(3a+b\right)}+\sqrt{b.4.\left(3b+a\right)}}\)\(\ge\)\(\frac{2.\left(a+b\right)}{\frac{4a+3a+b}{2}+\frac{4b+3b+a}{2}}\)\(=\frac{4\left(a+b\right)}{8\left(a+b\right)}=\frac{1}{2}\)

Dấu "=" xảy ra khi và chỉ khi a=b

27 tháng 11 2016

\(\sqrt{a\left(a+1\right)\left(a+2\right)\left(a+4\right)\left(a+5\right)\left(a+6\right)+36}\)

\(=\sqrt{a\left(a+6\right)\left(a+1\right)\left(a+5\right)\left(a+2\right)\left(a+4\right)+36}\)

\(=\sqrt{\left(a^2+6a\right)\left(a^2+6a+5\right)\left(a^2+6a+8\right)+36}\left(1\right)\)

Đặt \(a^2+6a=x\), Ta có:

\(\left(1\right)=\sqrt{x\left(x+5\right)\left(x+8\right)+36}\)

\(=\sqrt{\left(x^2+5\right)\left(x+8\right)+36}=\sqrt{x^3+13x^2+40x+36}\)

\(=\sqrt{x^3+9x^2+4x^2+36x+4x+36}=\sqrt{\left(x+9\right)\left(x+2\right)^2}\)

Thay \(x=a^2+6a\)vào biểu thức trên ta được:

\(\sqrt{\left(a^2+6a+9\right)\left(a^2+6a+2\right)^2}=\sqrt{\left(a+3\right)^2\left(a^2+6a+2\right)^2}=\left(a+3\right)\left(a^2+6a+2\right)\)

\(\rightarrowđpcm\)