\(\frac{a+b}{\sqrt{a\left(3a+b\right)}+\sqrt{b\left(3b+a\right)}}\g...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 12 2016

\(\frac{\left(a+b\right).2}{\sqrt{a.4.\left(3a+b\right)}+\sqrt{b.4.\left(3b+a\right)}}\)\(\ge\)\(\frac{2.\left(a+b\right)}{\frac{4a+3a+b}{2}+\frac{4b+3b+a}{2}}\)\(=\frac{4\left(a+b\right)}{8\left(a+b\right)}=\frac{1}{2}\)

Dấu "=" xảy ra khi và chỉ khi a=b

26 tháng 7 2019

Ta có:

\(\frac{a+b}{\sqrt{a\left(a+3b\right)}+\sqrt{b\left(b+3a\right)}}=\frac{2\left(a+b\right)}{\sqrt{4a\left(a+3b\right)}+\sqrt{4b\left(b+3a\right)}}\) (nhân 2 vào cả tử và mẫu)

\(\ge\frac{2\left(a+b\right)}{\frac{4a+a+3b}{2}+\frac{4b+b+3a}{2}}=\frac{4\left(a+b\right)}{8\left(a+b\right)}=\frac{1}{2}^{\left(đpcm\right)}\) (áp dụng BĐT Cô si vào cái mẫu)

Đẳng thức xảy ra khi \(\left\{{}\begin{matrix}4a=a+3b\\4b=b+3a\end{matrix}\right.\Leftrightarrow a=b\)

26 tháng 7 2019

Áp dụng BĐT Côsi ta có:

\( \sqrt {4a\left( {3a + b} \right)} \le \dfrac{{4a + 3a + b}}{2} = \dfrac{{7a + b}}{2}\\ \Rightarrow \sqrt {a\left( {3a + b} \right)} \le \dfrac{{7a + b}}{4}\\ \sqrt {4b\left( {3b + a} \right)} \le \dfrac{{4b + 3b + a}}{2} = \dfrac{{7b + a}}{2}\\ \Rightarrow \sqrt {b\left( {3b + a} \right)} \le \dfrac{{7b + a}}{4}\\ \Rightarrow \sqrt {a\left( {3a + b} \right)} + \sqrt {b\left( {3b + a} \right)} \le \dfrac{{7b + a + 7a + b}}{4} = 2\left( {a + b} \right)\\ \Rightarrow \dfrac{{a + b}}{{\sqrt {a\left( {3a + b} \right)} + \sqrt {b\left( {3b + a} \right)} }} \ge \dfrac{1}{2} \)

Dấu "=" xảy ra\(\left\{{}\begin{matrix}4a=3a+b\\4b=3b+a\end{matrix}\right.\Leftrightarrow a=b\)

12 tháng 3 2020

Với a , b > 0 . Ta có : \(\left(\sqrt{a\left(3a+b\right)}+\sqrt{b\left(3b+a\right)}\right)^2\le\left(\sqrt{a}^2+\sqrt{b}^2\right)\left(\sqrt{3a+b}^2+\sqrt{3b+a}^2\right)= \left(a+b\right).4\left(a+b\right)\)

\(\Rightarrow\sqrt{a\left(3a+b\right)}+\sqrt{b\left(3b+a\right)}\le2\left(a+b\right)\) ( vì a , b > 0 )

\(\Rightarrow A\ge\frac{1}{2}\left(đpcm\right)\)

Dấu " = " xảy ra \(\Leftrightarrow\frac{3a+b}{a}=\frac{3b+a}{b}\Leftrightarrow a=b\)

NV
20 tháng 6 2020

\(\frac{4\left(a+b\right)}{2\sqrt{4a\left(3a+b\right)}+2\sqrt{4b\left(3b+a\right)}}\ge\frac{4\left(a+b\right)}{4a+3a+b+4b+3b+a}=\frac{4\left(a+b\right)}{8\left(a+b\right)}=\frac{1}{2}\)

Dấu "=" xảy ra khi \(a=b\)

25 tháng 6 2021

+) Ta có \(\sqrt{4a\left(3a+b\right)}\le\frac{4a+\left(3a+b\right)}{2}=\frac{7a+b}{2}\)

\(\Rightarrow\sqrt{a\left(3a+b\right)}\le\frac{7a+b}{4}\left(2\right)\)

+) Tương tự ta lại có :

\(\sqrt{b\left(3b+a\right)}\le\frac{7b+a}{4}\left(3\right)\)

+) Từ (2) và (3) ta có :

\(VT\left(1\right)\ge\frac{a+b}{\frac{7a+b}{4}+\frac{7b+a}{4}}=\frac{1}{2}\left(đpcm\right)\)

25 tháng 6 2021

Ta có: \(\frac{a+b}{\sqrt{a\left(3a+b\right)}+\sqrt{b\left(3b+a\right)}}\)

\(=\frac{2\left(a+b\right)}{\sqrt{4a\left(3a+b\right)}+\sqrt{4b\left(3b+a\right)}}\ge\frac{2\left(a+b\right)}{\frac{1}{2}\left(4a+3a+b\right)+\frac{1}{2}\left(4b+3b+a\right)}\) (Cauchy)

\(=\frac{2\left(a+b\right)}{4\left(a+b\right)}=\frac{1}{2}\)

Dấu "=" xảy ra khi: a = b

NV
9 tháng 3 2019

Áp dụng BĐT \(\sqrt{xy}\le\frac{x+y}{2}\)

\(VT=\frac{2\left(a+b+c\right)}{\sqrt{4a\left(a+3b\right)}+\sqrt{4b\left(b+3c\right)}+\sqrt{4c\left(c+3a\right)}}\)

\(\Rightarrow VT\ge\frac{2\left(a+b+c\right)}{\frac{4a+a+3b}{2}+\frac{4b+b+3c}{2}+\frac{4c+c+3a}{2}}\)

\(\Rightarrow VT\ge\frac{4\left(a+b+c\right)}{8\left(a+b+c\right)}=\frac{1}{2}\) (đpcm)

Dấu "=" khi \(a=b=c\)

22 tháng 3 2017

Áp dụng BĐT AM-GM ta có: 

\(2\sqrt{a\left(3a+b\right)}=\sqrt{4a\left(3a+b\right)}\le\frac{4a+3a+b}{2}=\frac{7a+b}{2}\)

\(2\sqrt{b\left(3b+a\right)}=\sqrt{4b\left(3b+a\right)}\le\frac{4b+3b+a}{2}=\frac{7b+a}{2}\)

Suy ra \(\sqrt{b\left(3b+a\right)}+\sqrt{a\left(3a+b\right)}\le\frac{8a+8b}{4}=2\left(a+b\right)\)

\(\Rightarrow\frac{a+b}{\sqrt{b\left(3b+a\right)}+\sqrt{a\left(3a+b\right)}}\ge\frac{a+b}{2\left(a+b\right)}=\frac{1}{2}\)

11 tháng 1 2018

Áp dụng BĐT Cauchy-Schwarz ta có:

\(\sqrt{a\left(3a+b\right)}+\sqrt{b\left(3b+a\right)}\)

\(\le\sqrt{\left(a+b\right)\left(3a+b+3b+a\right)}\)

\(=\sqrt{4\left(a+b\right)^2}=2\left(a+b\right)\)

\(\Rightarrow\frac{a+b}{\sqrt{a\left(3a+b\right)}+\sqrt{b\left(3b+a\right)}}\ge\frac{a+b}{2\left(a+b\right)}=\frac{1}{2}\)

28 tháng 5 2018

Áp dụng Cauchy-Schwarz ta có:

\(\frac{a+b}{\sqrt{a\left(3a+b\right)}+\sqrt{b\left(3b+a\right)}}=\frac{1}{2}\)

31 tháng 3 2017

Ta có: 

\(\frac{a+b}{\sqrt{a\left(3a+b\right)}+\sqrt{b\left(3b+a\right)}}=\frac{2\left(a+b\right)}{\sqrt{4a\left(3a+b\right)}+\sqrt{4b\left(3b+a\right)}}\)

\(\ge\frac{2\left(a+b\right)}{\frac{4a+3a+b}{2}+\frac{4b+3b+a}{2}}=\frac{2\left(a+b\right)}{4\left(a+b\right)}=\frac{1}{2}\)

Dấu = xảy ra khi \(a=b\)

31 tháng 3 2017

Áp dụng BĐT Cauchy-Schwarz ta có: 

\(\sqrt{a\left(3a+b\right)}+\sqrt{b\left(3b+a\right)}=\sqrt{a}\sqrt{3a+b}+\sqrt{b}\sqrt{3b+a}\)

\(\le\sqrt{\left(a+b\right)\left(3a+b+3b+a\right)}=2\left(a+b\right)\)

\(\Rightarrow\frac{a+b}{\sqrt{a\left(3a+b\right)}+\sqrt{b\left(3b+a\right)}}\ge\frac{a+b}{2\left(a+b\right)}=\frac{1}{2}\)

Đẳng thức xảy ra khi \(a=b\)