Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=x^4\left(y-z\right)+y^4\left(z-x\right)+z^4\left(x-y\right)\)
\(=x^4y-x^4z+y^4z-y^4x+z^4\left(x-y\right)\)
\(=xy\left(x^3-y^3\right)-z\left(x^4-y^4\right)+z^4\left(x-y\right)\)
\(=xy\left(x-y\right)\left(x^2+xy+y^2\right)-z\left(x-y\right)\left(x^3+x^2y+xy^2+y^3\right)+z^4\left(x-y\right)\)
\(=\left(x-y\right)\left[xy\left(x^2+xy+y^2\right)-z\left(x^3+x^2y+xy^2+y^3\right)+z^4\right]\)
\(=\left(x-y\right)\left(x^3y+x^2y^2+xy^3-x^3z-x^2yz-xy^2z-y^3z+z^4\right)\)
\(=\left(x-y\right)\left[x^3\left(y-z\right)+x^2y\left(y-z\right)+xy^2\left(y-z\right)-z\left(y^3-z^3\right)\right]\)
\(=\left(x-y\right)\left[x^3\left(y-z\right)+x^2y\left(y-z\right)+xy^2\left(y-z\right)-z\left(y-z\right)\left(y^2+yz+z^2\right)\right]\)
\(=\left(x-y\right)\left(y-z\right)\left[x^3+x^2y+xy^2-z\left(y^2+yz+z^2\right)\right]\)
\(=\left(x-y\right)\left(y-z\right)\left(x^3+x^2y+xy^2-y^2z-yz^2-z^3\right)\)
\(=\left(x-y\right)\left(y-z\right)\left[x^3-z^3+y\left(x^2-z^2\right)+y^2\left(x-z\right)\right]\)
\(=\left(x-y\right)\left(y-z\right)\left[\left(x-z\right)\left(x^2+xz+z^2\right)+y\left(x-z\right)\left(x+z\right)+y^2\left(x-z\right)\right]\)
\(=\left(x-y\right)\left(y-z\right)\left(x-z\right)\left[x^2+xz+z^2+y\left(x+z\right)+y^2\right]\)
\(=\left(x-y\right)\left(y-z\right)\left(x-z\right)\frac{2\left(x^2+xz+z^2+xy+yz+y^2\right)}{2}\)
\(=\left(x-y\right)\left(y-z\right)\left(x-z\right)\frac{x^2+2xz+z^2+x^2+xy+y^2+y^2+yz+z^2}{2}\)
\(\left(x-y\right)\left(y-z\right)\left(x-z\right)\frac{\left(x+z\right)^2+\left(x+y\right)^2+\left(y+z\right)^2}{2}\)
\(Ta\)\(có\)\(x>y>z\Rightarrow\left(x-y\right);\left(y-z\right);\left(x-z\right)>0\)
\(\left(x+z\right)^2;\left(y+z\right)^2;\left(x+y\right)^2\ge0\)
\(\Rightarrow A>o\Rightarrow A\)\(luôn\)\(dương\)
dễ mà cô nương
\(a^3-b^3=\left(a-b\right)\left(a^2+ab+b^2\right)\)
\(\left(a^2+ab+b^2\right)=\left\{\left(a+b\right)^2-ab\right\}\)
\(a^3-b^3=\left(a-b\right)\left(25-6\right)=19\left(a-b\right)\)
ta có
\(a=-5-b\)
suy ra
\(a^3-b^3=19\left(-5-2b\right)\) " xong "
2, trên mạng đầy
3, dytt mọe mày ngu ab=6 thì cmm nó phải chia hết cho 6 chứ :)
4 . \(x^2-\frac{2.1}{2}x+\frac{1}{4}+\frac{1}{3}-\frac{1}{4}>0\) tự làm dcmm
5. trên mạng đầy
6 , trên mang jđầy
\(A=\left(x-y\right)^2\left(z^2-2z+1\right)-2\left(z-1\right)\left(x-y\right)^2+\left(x-y\right)^2\)
\(A=\left(x-y\right)^2\left(z-1\right)^2-2\left(x-y\right)\left(z-1\right)\left(x-y\right)+\left(x-y\right)^2\)
\(A=\left[\left(x-y\right)\left(z-1\right)-\left(x-y\right)\right]^2\ge0\) \(\forall x,y,z\)
a)
Đặt
\(\sqrt{1+x}=a; \sqrt{1-x}=b\Rightarrow \left\{\begin{matrix} ab=\sqrt{(1+x)(1-x)}=\sqrt{1-x^2}\\ a\geq b\\ a^2+b^2=2\end{matrix}\right.\)
Khi đó:
\(A=\frac{\sqrt{1-\sqrt{1-x^2}}(\sqrt{(1+x)^3}+\sqrt{(1-x)^3})}{2-\sqrt{1-x^2}}\)
\(=\frac{\sqrt{\frac{a^2+b^2}{2}-ab}(a^3+b^3)}{a^2+b^2-ab}=\frac{\sqrt{\frac{a^2+b^2-2ab}{2}}(a+b)(a^2-ab+b^2)}{a^2+b^2-ab}\)
\(=\sqrt{\frac{a^2-2ab+b^2}{2}}(a+b)=\sqrt{\frac{(a-b)^2}{2}}(a+b)=\frac{1}{\sqrt{2}}|a-b|(a+b)\)
\(=\frac{1}{\sqrt{2}}(a-b)(a+b)=\frac{1}{\sqrt{2}}(a^2-b^2)=\frac{1}{\sqrt{2}}[(1+x)-(1-x)]=\sqrt{2}x\)
Sửa đề: \(\frac{25}{(x+z)^2}=\frac{16}{(z-y)(2x+y+z)}\)
Ta có:
Áp dụng tính chất dãy tỉ số bằng nhau thì:
\(k=\frac{a}{x+y}=\frac{5}{x+z}=\frac{a+5}{2x+y+z}=\frac{5-a}{z-y}\) ($k$ là một số biểu thị giá trị chung)
Khi đó:
\(\frac{16}{(z-y)(2x+y+z)}=\frac{25}{(x+z)^2}=(\frac{5}{x+z})^2=k^2\)
Mà: \(k^2=\frac{a+5}{2x+y+z}.\frac{5-a}{z-y}=\frac{25-a^2}{(2x+y+z)(z-y)}\)
Do đó: \(\frac{16}{(z-y)(2x+y+z)}=\frac{25-a^2}{(2x+y+z)(z-y)}\Rightarrow 16=25-a^2\)
\(\Rightarrow a^2=9\Rightarrow a=\pm 3\)
Suy ra:
\(Q=\frac{a^6-2a^5+a-2}{a^5+1}=\frac{a^5(a-2)+(a-2)}{a^5+1}=\frac{(a-2)(a^5+1)}{a^5+1}=a-2=\left[\begin{matrix}
1\\
-5\end{matrix}\right.\)
a: \(=6x^2-9x+14x-21-4x^2+20x-25-2x\left(x+6\right)+5-31x\)
\(=2x^2-6x-41-2x^2-12x\)
=-18x-41
b: \(=2x^2-6x-2x^2+6x+14=14\)
c: \(=x^3+1-x^3+1=2\)
\(\sqrt{a\left(a+1\right)\left(a+2\right)\left(a+4\right)\left(a+5\right)\left(a+6\right)+36}\)
\(=\sqrt{a\left(a+6\right)\left(a+1\right)\left(a+5\right)\left(a+2\right)\left(a+4\right)+36}\)
\(=\sqrt{\left(a^2+6a\right)\left(a^2+6a+5\right)\left(a^2+6a+8\right)+36}\left(1\right)\)
Đặt \(a^2+6a=x\), Ta có:
\(\left(1\right)=\sqrt{x\left(x+5\right)\left(x+8\right)+36}\)
\(=\sqrt{\left(x^2+5\right)\left(x+8\right)+36}=\sqrt{x^3+13x^2+40x+36}\)
\(=\sqrt{x^3+9x^2+4x^2+36x+4x+36}=\sqrt{\left(x+9\right)\left(x+2\right)^2}\)
Thay \(x=a^2+6a\)vào biểu thức trên ta được:
\(\sqrt{\left(a^2+6a+9\right)\left(a^2+6a+2\right)^2}=\sqrt{\left(a+3\right)^2\left(a^2+6a+2\right)^2}=\left(a+3\right)\left(a^2+6a+2\right)\)
\(\rightarrowđpcm\)