Tìm x \(\in\) Z để A có giá trị nguyên
A=\(\frac{5x-2}{x-2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: x>=0 và x<>9
Để A là số nguyên thì \(\sqrt{x}+2⋮\sqrt{x}-3\)
=>\(\sqrt{x}-3+5⋮\sqrt{x}-3\)
=>\(5⋮\sqrt{x}-3\)
=>\(\sqrt{x}-3\in\left\{1;-1;5;-5\right\}\)
=>\(\sqrt{x}\in\left\{4;2;8;-2\right\}\)
=>\(\sqrt{x}\in\left\{2;4;8\right\}\)
=>\(x\in\left\{4;16;64\right\}\)
a)\(A=\frac{x^2}{5x+25}+\frac{2x-10}{x}+\frac{50+5x}{x^2+5x}\left(ĐK:x\ne0;-5\right)\)
\(\Leftrightarrow A=\frac{x^2}{5\left(x+5\right)}+\frac{2\left(x-5\right)}{x}+\frac{5\left(x+10\right)}{x\left(x+5\right)}\)
\(\Leftrightarrow A=\frac{x^3+10\left(x^2-25\right)+25x+250}{5x\left(x+5\right)}\)
\(\Leftrightarrow A=\frac{x^3+10x^2+25x}{5x\left(x+5\right)}\)
\(\Leftrightarrow A=\frac{x\left(x+5\right)^2}{5x\left(x+5\right)}\)
\(\Leftrightarrow A=\frac{x+5}{5}\)
b)Để A=-4 \(\Leftrightarrow\frac{x+5}{5}=-4\)
\(\Leftrightarrow x+5=-20\)
\(\Leftrightarrow x=-25\)
a).....
\(=\frac{x^2}{5\left(x+5\right)}+\frac{2x-10}{x}+\frac{50+5x}{x\left(x+5\right)}\) MTC= 5x (x+5) ĐK\(\hept{\begin{cases}x\ne0\\x\ne-5\end{cases}}\)
\(=\frac{x^2.x}{5x\left(x+5\right)}+\frac{5.\left(2x-10\right).\left(x+5\right)}{5x\left(x+5\right)}+\frac{5.\left(50+5x\right)}{5x\left(x+5\right)}\)
\(=\frac{x^3+\left(10x-50\right).\left(x+5\right)+250+25x}{5x\left(x+5\right)}\)
\(=\frac{x^3+10x^2+50x-50x-250+250+25x}{5x\left(x+5\right)}\)
\(=\frac{x^3+10x^2+25x}{5x\left(x+5\right)}\)
\(=\frac{x\left(x^2+10x+25\right)}{5x\left(x+5\right)}\)
\(=\frac{x\left(x+5\right)^2}{5x\left(x+5\right)}=\frac{x+5}{5}\)
b) A=-4
=>\(\frac{x+5}{5}=-4\)
=> x = -25
c)
d) Để A đạt gt nguyên thì 5\(⋮\)x+5
=> \(\left(x+5\right)\inƯ\left(5\right)=\left\{1;-1;5;-5\right\}\)
*x+5=1 => x=-4 \(\in Z\)
*x+5=-1 => x=-6\(\in Z\)
*x+5=5 => x=0\(\in Z\)
*x+5=-5 => x=-10\(\in Z\)
Vậy...........
A=\(\frac{\left(x-2\right)+\left(4x-8\right)+8}{x-2}\)=3+\(\frac{8}{x-2}\)
Để A nguyên thì \(\frac{8}{x-2}\)<=>x-2={\(\mp\)1;\(\mp\)2;\(\mp\)4:\(\mp\)8}<=>x={-4;-2;0;1;3;6;10)
Vậy các giá trị của x để A nguyên là -4;-2;0;1;3;6 và 10
\(A=\frac{5x-2}{x-2}=\frac{5.\left(x-2\right)+8}{x-2}=5+\frac{8}{x-2}\)
Để A nguyên nên 8 phải chia hết cho x-2
Lập bảng
\(A=\dfrac{x+2}{x^2-x+3}\Leftrightarrow Ax^2-Ax+3A=x+2\\ \Leftrightarrow Ax^2-x\left(A+1\right)+3A-2=0\\ \Leftrightarrow\Delta=\left(A+1\right)^2-4A\left(3A-2\right)\ge0\\ \Leftrightarrow-11A+10A+1\ge0\\ \Leftrightarrow-\dfrac{1}{11}\le A\le1\)
Mà \(A\in Z\Leftrightarrow A\in\left\{0;1\right\}\)
\(+)A=0\Leftrightarrow x+2=0\Leftrightarrow x=-2\\ +)A=1\Leftrightarrow x+2=x^2-x+3\Leftrightarrow x=1\)
Vậy \(x\in\left\{-2;1\right\}\Leftrightarrow A\in Z\)
Bài 1:
a: Để B có nghĩa thì \(x^4-10x^2+9< >0\)
\(\Leftrightarrow\left(x-3\right)\left(x-1\right)\left(x+3\right)\left(x+1\right)< >0\)
hay \(x\notin\left\{3;1;-3;-1\right\}\)
b: \(B=0\) khi \(x^4-5x^2+4=0\)
=>(x-2)(x+2)=0
hay \(x\in\left\{2;-2\right\}\)
Lời giải:
a. Với $x$ nguyên, để biểu thức có giá trị nguyên thì $x-1$ là ước của $2$
$\Rightarrow x-1\in\left\{1; -1; 2;-2\right\}$
$\Rightarrow x\in\left\{2; 0; 3; -1\right\}$
b.
$\frac{x-2}{x-1}=\frac{(x-1)-1}{x-1}=1-\frac{1}{x-1}$
Để biểu thức nhận giá trị nguyên thì $\frac{1}{x-1}$ nguyên
$\Rightarrow x-1$ là ước của $1$
$\Rightarrow x-1\in\left\{1; -1\right\}$
$\Rightarrow x\in\left\{2; 0\right\}$
Để A nguyên thì 5x-2 chia hết cho x-2
5(x-2)+10-2 chia hết cho x-2
5(x-2)+8 chia hết cho x-2
vì 5(x-2)chia hết cho x-2 nên 8 chia hết cho x-2
nên x-2 thuộc Ư(8)
mà x nguyên suy ra x-2 thuộc{ -8; -4 ; -2; -1; 1 ; 2 ;4 ;8}
x thuộc{ -6 ; -2; 0; 1; 3; 4; 6; 10}