PTĐT : x2 - y2 - 2x - 2y
Giúp mình với ạ!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
( 6x + 3 ) - ( 2x - 5 ) ( 2x + 1 ) = 3 ( 2x + 1 ) - ( 2x - 5 ) ( 2x + 1 )
= ( 2x + 1 ) ( 3 - 2x + 5 ) = ( 2x + 1 ) ( 8 - 2x ) = - 2 ( 2x + 1 ) ( x - 4 )
(6x + 3) - (2x - 5)(2x + 1)
= 3(2x + 1) - (2x - 5)(2x + 1)
= (2x + 1)[3 - (2x - 5)]
= (2x + 1)(3 - 2x + 5)
= (2x + 1)(8 - 2x)
Đây nhé ta thêm bớt:
\(x^2+xy+y^2=x^2+y^2+2xy-xy=\left(x+y\right)^2-xy=\left(-2\right)^2-xy=4-xy\)
\(a,3\left(x^2-7\right)-x\left(3x+5\right)=3x^2-21-3x^2-5x=-5x-21\\ b,\left(12x^2y^2-6xy\right):3xy+2y=3xy\left(4xy-2\right):3xy+2y=4xy-2+2y\)
\(c,\dfrac{4}{x+1}+\dfrac{8}{\left(x-1\right)\left(x+1\right)}=\dfrac{4\left(x-1\right)+8}{\left(x-1\right)\left(x+1\right)}=\dfrac{4x-4+8}{\left(x-1\right)\left(x+1\right)}=\dfrac{4x+4}{\left(x-1\right)\left(x+1\right)}=\dfrac{4\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}=\dfrac{4}{x-1}\)
a) \(x^2+xy+y^2+1\)
\(=x^2+xy+\dfrac{y^2}{4}-\dfrac{y^2}{4}+y^2+1\)
\(=\left(x+\dfrac{y}{2}\right)^2+\dfrac{3y^2}{4}+1\)
mà \(\left\{{}\begin{matrix}\left(x+\dfrac{y}{2}\right)^2\ge0,\forall x;y\\\dfrac{3y^2}{4}\ge0,\forall x;y\end{matrix}\right.\)
\(\Rightarrow\left(x+\dfrac{y}{2}\right)^2+\dfrac{3y^2}{4}+1>0,\forall x;y\)
\(\Rightarrow dpcm\)
b) \(...=x^2-2x+1+4\left(y^2+2y+1\right)+z^2-6z+9+1\)
\(=\left(x-1\right)^2+4\left(y^{ }+1\right)^2+\left(z-3\right)^2+1>0,\forall x.y\)
\(\Rightarrow dpcm\)
\(a,A=\left(x+y\right)^2-9z^2=\left(x+y-3z\right)\left(x+y+3z\right)\\ A=\left(5+7-36\right)\left(5+7+36\right)=-24\cdot48=-1152\\ b,B=\left(2x-y\right)\left(2x+y\right)+\left(2x+y\right)=\left(2x+y\right)\left(2x-y-1\right)\\ B=\left(2+2\right)\left(2-2-1\right)=4\cdot\left(-1\right)=-4\)
b: Ta có: \(B=-2x^2+4x+1\)
\(=-2\left(x^2-2x-\dfrac{1}{2}\right)\)
\(=-2\left(x^2-2x+1-\dfrac{3}{2}\right)\)
\(=-2\left(x-1\right)^2+3\le3\forall x\)
Dấu '=' xảy ra khi x=1
x2 - y2 - 2x - 2y
= (x - y)(x + y) - 2(x + y)
= (x + y)(x - y - 2)
x\(^2\) - y\(^2\) - 2x - 2y
= (x-y)(x+y) - 2(x-y)
=(x-y)(x+y-2)