K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 8 2021

x2 - y2 - 2x - 2y 

 = (x - y)(x + y) - 2(x + y) 

= (x + y)(x - y - 2)

16 tháng 8 2021

x\(^2\) - y\(^2\) - 2x - 2y

= (x-y)(x+y) - 2(x-y)

=(x-y)(x+y-2)

15 tháng 8 2021

3x2 - 2y2 - 2(x - y)2 

 = 3x2 - 2y2 - 2(x2 - 2xy + y2

 = 3x2 - 2y2 - 2x2 + 4xy - 2y2 

= x2 + 4xy - 4y2 

= x2 + 4xy + 4y2 - 8y2 

\(\left(x+2y\right)^2-\left(\sqrt{8}y\right)^2=\left(x+2y+\sqrt{8}y\right)\left(x+2y-\sqrt{8}y\right)\)

15 tháng 3 2021

\(x^2+y^2+4=xy+2y+2x\)

\(\Leftrightarrow2x^2+2y^2+8=2xy+4x+4y\)
\(\Leftrightarrow2x^2+2y^2+8-2xy-4x-4y=0\)

\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(x^2-4x+4\right)+\left(y^2-4y+4\right)=0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(x-2\right)^2+\left(y-2\right)^2=0\)

Ta có:

\(\left(x-y\right)^2\ge0\forall x;y\)

\(\left(x-2\right)^2\ge0\forall x\)

\(\left(y-2\right)^2\ge0\forall y\)

\(\Rightarrow\left(x-y\right)^2+\left(y-2\right)^2+\left(x-2\right)^2\ge0\forall x;y\)

Dấu bằng xảy ra

\(\Leftrightarrow\hept{\begin{cases}x-y=0\\y-2=0\\x-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=y\\y=2\\x=2\end{cases}}\Leftrightarrow x=y=2\)

Vậy phương trình có nghiệm (x;y) =(2;2)

5 tháng 7 2016

bài này dài lăm mk làm giúp 1 câu

A = (x -y)+ (x+1)2 + (y-1)2 + 1

vậy GTNN = 1

(bn phân h 2x= x2 + x2

  2y2 = y2+ y và 3 =1+1+1

là hiểu cách mk làm , còn nếu k hiểu ra đưa thầy giáo ,thầy sẽ gọi mk là thiên tài)

6 tháng 7 2016

bạn đó giải rồi nhung nếu cần mình giải kỹ thì nhắn tin mình nha

4 tháng 9 2016

a/ A = 3x2 + 6x - 2  => 3A = 9x2 + 18x - 6 = (3x)2 + 2 . 3 . 3x + 32 - 15 = (3x + 3)2 - 15 \(\ge\)-15  => A\(\ge\)5

Đẳng thức xảy ra khi: (3x + 3)2 = 0  => x = -1

Vậy giá trị nhỏ nhất của A là -5 khi x = -1.

b/ B = (x + 1)(2x - 3) + 1 = 2x2 - 3x + 2x - 3 + 1 = 2x2 - x - 2

=> 2B = 4x2 - 2x - 4 = (2x)2 - 2 . 0,5 . 2x + 0,52 - 4,25 = (2x - 0,5)2 - 4,25 \(\ge\)-4,25  => B \(\ge\)-2,125

Đẳng thức xảy ra khi: (2x - 0,5)2 = 0  => x = 0,25

Vậy giá trị nhỏ nhất của B là -2,125 khi x = 0,25.

c/ C = x2 + y2 + 4x - 2y + 1 = x2 + y2 + 4x - 2y + 1 + 22 - 22 = (x2 + 4x + 22) + (y2 - 2y + 1) - 4 = (x + 2)2 + (y - 1)2 - 4 \(\ge\)-4

Đẳng thức xảy ra khi: (x + 2)2 = 0 và (y - 1)2 = 0  => x = -2 và y = 1

Vậy giá trị nhỏ nhất của C là -4 khi x = -2 và y = 1

4 tháng 9 2016

mk làm giúp bn;

A = 3(x+1)2 -3 -2  => GTNN A = -5

B  = 2x2 - x -2 = 2(x - 1/2)2 -1/2 -2   => GTNN B = -5/2

( tisk thì làm tip, k thi nghỉ khỏe)

5 tháng 9 2020

a) VT = x3 + 3x2y + 3xy2 + y3 + x3 - 3x2y + 3xy2 - y3

          = 2x3 + 6xy2

          = 2x( x2 + 3y2 ) = VP

=> đpcm

b) VT = x3 + 3x2y + 3xy2 + y3 - ( x3 - 3x2y + 3xy2 - y3 )

          = x3 + 3x2y + 3xy2 + y3 - x3 + 3x2y - 3xy2 + y3

          = 3x2y + 2y3

          = 2y( 3x2 + y2 ) = VP

=> đpcm

5 tháng 9 2020

a)

 \(VT=\left(x+y+x-y\right)\left[\left(x+y\right)^2-\left(x+y\right)\left(x-y\right)+\left(x-y\right)^2\right]\)

\(=2x\left[x^2+2xy+y^2-x^2+y^2+x^2-2xy+y^2\right]\)

\(=2x\left(x^2+3y^2\right)=VP\)

b)

\(VT=\left(x+y-x+y\right)\left[\left(x+y\right)^2+\left(x+y\right)\left(x-y\right)+\left(x-y\right)^2\right]\)

\(=2y\left(x^2+2xy+y^2+x^2-y^2+x^2-2xy+y^2\right)\)

\(=2y\left(3x^2+y^2\right)=VP\)

14 tháng 10 2020

\(=x^3+x^2-\left(4x+4\right)=x^2\left(x+1\right)-4\left(x+1\right)=\left(x^2-4\right)\left(x+1\right)\)
\(=\left(x-2\right)\left(x+1\right)\left(x+2\right)\)

\(x^4+x^3+x^2-1=x^3\left(x+1\right)+\left(x-1\right)\left(x+1\right)=\left(x+1\right)\left(x^3+x-1\right)\)

\(c,=\left(x+y\right)^2-2\left(x+y\right)+1=\left(x+y-1\right)^2\)

\(d,=x^2y^2-y^2-x^2+1=\left(x^2-1\right)\left(y^2-1\right)=\left(x-1\right)\left(y-1\right)\left(x+1\right)\left(y+1\right)\)

\(e,4x^2+4x-15=\left(4x^2+4x+1\right)-16=\left(2x+1\right)^2-4^2=\left(2x+5\right)\left(2x-3\right)\)

\(3x^2-7x+2=\left(3x^2-6x\right)-\left(x-2\right)=3x\left(x-2\right)-\left(x-2\right)=\left(3x-1\right)\left(x-2\right)\)

\(4x^2-5x+1=\left(4x^2-4x\right)-\left(x-1\right)=4x\left(x-1\right)-\left(x-1\right)=\left(4x-1\right)\left(x-1\right)\)

14 tháng 10 2020

Phân tích à :v

a) x3 + x2 - 4x - 4 = x2( x + 1 ) - 4( x + 1 ) = ( x + 1 )( x2 - 4 ) = ( x + 1 )( x - 2 )( x + 2 )

b) x4 + x3 + x2 - 1 = x3( x + 1 ) + ( x - 1 )( x + 1 ) = ( x + 1 )( x3 + x - 1 )

c) x2 + 2xy + y2 - 2x - 2y + 1 = ( x2 + 2xy + y2 ) - ( 2x + 2y ) + 1 = ( x + y )2 - 2( x + y ) + 12 = ( x + y - 1 )2

d) x2y2 + 1 - x2 - y2 = ( x2y2 - x2 ) - ( y2 - 1 ) = x2( y2 - 1 ) - ( y2 - 1 ) = ( y2 - 1 )( x2 - 1 ) = ( y - 1 )( y + 1 )( x - 1 )( x + 1 )

e) 4x2 + 4x - 15 = ( 4x2 + 4x + 1 ) - 16 = ( 2x + 1 )2 - 42 = ( 2x + 1 - 4 )( 2x + 1 + 4 ) = ( 2x - 3 )( 2x + 5 )

g) 3x2 - 7x + 2 = 3x2 - 6x - x + 2 = 3x( x - 2 ) - ( x - 2 ) = ( x - 2 )( 3x - 1 )

h) 4x2 - 5x + 1 = 4x2 - 4x - x + 1 = 4x( x - 1 ) - ( x - 1 ) = ( x - 1 )( 4x - 1 )