Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
chuyển vế sang r phân tích thành nhân tử, có thể dùng máy tính bỏ túi nhé bạn
câu 1: 9\(x^2\) + 12\(x\) + 5 =11
(3\(x\))2 + 2.3.\(x\) .2 + 22 + 1 = 11
(3\(x\) + 2)2 = 11 - 1
(3\(x\) + 2)2 = 10
\(\left[{}\begin{matrix}3x+2=\sqrt{10}\\3x+2=-\sqrt{10}\end{matrix}\right.\)
\(\left[{}\begin{matrix}3x=\sqrt{10}-2\\3x=-\sqrt{10}-2\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=\dfrac{\sqrt{10}-2}{3}\\x=\dfrac{-\sqrt{10}-2}{3}\end{matrix}\right.\)
Vậy S = {\(\dfrac{-\sqrt{10}-2}{3}\); \(\dfrac{\sqrt{10}-2}{3}\)}
Câu 2: 6\(x^2\) + 16\(x\) + 12 = 2\(x^2\)
6\(x^2\) + 16\(x\) + 12 - 2\(x^2\) = 0
4\(x^2\) + 16\(x\) + 12 = 0
(2\(x\))2 + 2.2.\(x\).4 + 16 - 4 = 0
(2\(x\) + 4)2 = 4
\(\left[{}\begin{matrix}2x+4=2\\2x+4=-2\end{matrix}\right.\)
\(\left[{}\begin{matrix}2x=-2\\2x=-6\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=-1\\x=-3\end{matrix}\right.\)
S = { -3; -1}
3, 16\(x^2\) + 22\(x\) + 11 = 6\(x\) + 5
16\(x^2\) + 22\(x\) - 6\(x\) + 11 - 5 = 0
16\(x^2\) + 16\(x\) + 6 = 0
(4\(x\))2 + 2.4.\(x\) . 2 + 22 + 2 = 0
(4\(x\) + 2)2 + 2 = 0 (1)
Vì (4\(x\)+ 2)2 ≥ 0 ∀ ⇒ (4\(x\) + 2)2 + 2 > 0 ∀ \(x\) vậy (1) Vô nghiệm
S = \(\varnothing\)
Câu 4. 12\(x^2\) + 20\(x\) + 10 = 3\(x^2\) - 4\(x\)
12\(x^2\) + 20\(x\) + 10 - 3\(x^2\) + 4\(x\) = 0
9\(x^2\) + 24\(x\) + 10 = 0
(3\(x\))2 + 2.3.\(x\).4 + 16 - 6 = 0
(3\(x\) + 4)2 = 6
\(\left[{}\begin{matrix}3x+4=\sqrt{6}\\3x+4=-\sqrt{6}\end{matrix}\right.\)
\(\left[{}\begin{matrix}3x=-4+\sqrt{6}\\3x=-4-\sqrt{6}\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=\dfrac{\sqrt{6}-4}{3}\\x=-\dfrac{\sqrt{6}+4}{3}\end{matrix}\right.\)
S = {\(\dfrac{-\sqrt{6}-4}{3}\); \(\dfrac{\sqrt{6}-4}{3}\)}
(x+1)(6x2+2x)+(x-1)(6x2+2x)
<=> (6x2+2x)(x+1+x-1)
<=> 2x(3x+1)2x
<=> 4x2(3x+1)
<=> x2=0
3x+1=0
<=> x=0
x= -1/3 (-1 phần 3)
1: =>(x+2018)(6x-3)=0
=>x+2018=0 hoặc 6x-3=0
=>x=1/2 hoặc x=-2018
2: x(x-11)+3(11-x)=0
=>(x-11)(x-3)=0
=>x=11 hoặc x=3
4: =>(x+5)(2x-4)=0
=>2x-4=0 hoặc x+5=0
=>x=2 hoặc x=-5
3: =>(x-3)(x+2)=0
=>x=3 hoặc x=-2
Bài 1:
\(6x\left(x+2018\right)-3\left(x+2018\right)=0\)
\(\Leftrightarrow\left(x+2018\right)\left(6x-3\right)=0\)
\(\Leftrightarrow3\left(x+2018\right)\left(2x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2018\\2x=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2018\\x=\dfrac{1}{2}\end{matrix}\right.\)
Bài 2:
\(x\left(x-11\right)+3\left(11-x\right)=0\)
\(\Leftrightarrow x\left(x-11\right)-3\left(x-11\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x-11\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=11\end{matrix}\right.\)
Câu 3:
\(x\left(x-3\right)-2\left(3-x\right)=0\)
\(\Leftrightarrow x\left(x-3\right)+2\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)
Câu 4:
\(2x\left(x+5\right)-4\left(x+5\right)=0\)
\(\Leftrightarrow\left(x+5\right)\left(2x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-5\\2x=4\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=2\end{matrix}\right.\)
c) \(x^3-9x^2+6x+16=x^3-8x^2-x^2+8x-2x+16\)
\(=x^2\left(x-8\right)-x\left(x-8\right)-2\left(x-8\right)=\left(x-8\right)\left(x^2-x-2\right)=\left(x-8\right)\left(x-2\right)\left(x+1\right)\)
d) \(2x^3+3x^2+3x+1=\left(2x+1\right)\left(x^2+x+1\right)\)
e) \(2x^3-5x^2+5x-3=\left(2x-3\right)\left(x^2-x+1\right)\)
chu vi hcn là 4/5 chiều rong bang 4/5 chieu dai . tinh dien tích hcn
giúp mình nha
( 6x + 3 ) - ( 2x - 5 ) ( 2x + 1 ) = 3 ( 2x + 1 ) - ( 2x - 5 ) ( 2x + 1 )
= ( 2x + 1 ) ( 3 - 2x + 5 ) = ( 2x + 1 ) ( 8 - 2x ) = - 2 ( 2x + 1 ) ( x - 4 )
(6x + 3) - (2x - 5)(2x + 1)
= 3(2x + 1) - (2x - 5)(2x + 1)
= (2x + 1)[3 - (2x - 5)]
= (2x + 1)(3 - 2x + 5)
= (2x + 1)(8 - 2x)