Cho x , y thỏa mãn : x + y = 2 . Tìm min của đa thức
A = ( 1 + x4 )( 1 + y4 ) + 4( xy - 1 )( 3xy - 1 )
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Đặt x = √2.cosα và y = √2.sinα (với α trên [0,3π/2])
Ta có: P = 4√2(sinα + cosα)(1 - sinαcosα) - 6sinαcosα
Đặt t = sinα + cosα = √2.sin(α + π/4) có |t| ≤ √2, nên sinαcosα = (t^2 - 1)/2
suy ra P = -2√2.t^3 - 3t^2 + 6√2.t + 3.
Đến đây bạn áp dụng P' = 0 rồi xét các gtrị cực trị.
2. Đặt x = cosα và y = sinα (với α trên [0,3π/2])
Biến đổi P = (6sin2α + cos2α + 1) / (3 + sin 2α - cos 2α)
Mặt khác lại có (cos2α)^2 + (sin 2α)^2 = 1.
Ta áp dụng P' = 0 tiếp.
1) Áp dụng bất đẳng thức AM - GM và bất đẳng thức Schwarz:
\(P=\dfrac{1}{a}+\dfrac{1}{\sqrt{ab}}\ge\dfrac{1}{a}+\dfrac{1}{\dfrac{a+b}{2}}\ge\dfrac{4}{a+\dfrac{a+b}{2}}=\dfrac{8}{3a+b}\ge8\).
Đẳng thức xảy ra khi a = b = \(\dfrac{1}{4}\).
2.
\(4=a^2+b^2\ge\dfrac{1}{2}\left(a+b\right)^2\Rightarrow a+b\le2\sqrt{2}\)
Đồng thời \(\left(a+b\right)^2\ge a^2+b^2\Rightarrow a+b\ge2\)
\(M\le\dfrac{\left(a+b\right)^2}{4\left(a+b+2\right)}=\dfrac{x^2}{4\left(x+2\right)}\) (với \(x=a+b\Rightarrow2\le x\le2\sqrt{2}\) )
\(M\le\dfrac{x^2}{4\left(x+2\right)}-\sqrt{2}+1+\sqrt{2}-1\)
\(M\le\dfrac{\left(2\sqrt{2}-x\right)\left(x+4-2\sqrt{2}\right)}{4\left(x+2\right)}+\sqrt{2}-1\le\sqrt{2}-1\)
Dấu "=" xảy ra khi \(x=2\sqrt{2}\) hay \(a=b=\sqrt{2}\)
3. Chia 2 vế giả thiết cho \(x^2y^2\)
\(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{x^2}+\dfrac{1}{y^2}-\dfrac{1}{xy}\ge\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^2\)
\(\Rightarrow0\le\dfrac{1}{x}+\dfrac{1}{y}\le4\)
\(A=\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}-\dfrac{1}{xy}\right)=\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^2\le16\)
Dấu "=" xảy ra khi \(x=y=\dfrac{1}{2}\)
Áp dụng BĐT Cauchy-Schwarz dạng Engel có:
\(A=\dfrac{1}{x^2+y^2}+\dfrac{1}{2xy}+\dfrac{1}{2xy}\ge\dfrac{4}{x^2+y^2+2xy}+\dfrac{1}{\dfrac{\left(x+y\right)^2}{2}}=\dfrac{4}{\left(x+y\right)^2}+\dfrac{2}{\left(x+y\right)^2}=6\)
Dấu "=" xảy ra khi x=y=\(\dfrac{1}{2}\)
áp dụng BDT AM-GM
\(=>x+y\ge2\sqrt{xy}=>1\ge2\sqrt{xy}=>\sqrt{xy}\le\dfrac{1}{2}=>xy\le\dfrac{1}{4}\)
\(A=\dfrac{1}{x^2+y^2}+\dfrac{1}{xy}=\dfrac{1}{x^2+y^2}+\dfrac{1}{2xy}+\dfrac{1}{2xy}\)
\(\ge\dfrac{4}{x^2+2xy+y^2}+\dfrac{1}{2.\dfrac{1}{4}}=\dfrac{4}{\left(x+y\right)^2}+2=4+2=6\)
dấu"=" xảy ra \(< =>x=y=\dfrac{1}{2}\)
\(\left(x-1;y-1\right)=\left(a;b\right)\Rightarrow\left\{{}\begin{matrix}a;b>0\\a+b\le2\end{matrix}\right.\)
\(A=\dfrac{\left(a+1\right)^4}{b^2}+\dfrac{\left(b+1\right)^4}{a^2}\ge\dfrac{1}{2}\left[\dfrac{\left(a+1\right)^2}{b}+\dfrac{\left(b+1\right)^2}{a}\right]^2\)
\(A\ge\dfrac{1}{2}\left[\dfrac{\left(a+b+2\right)^2}{a+b}\right]^2\ge\dfrac{1}{2}\left[\dfrac{8\left(a+b\right)}{a+b}\right]^2=32\)
Bài 2 :
a, \(A+B=x^2-2y^2+xy+1+x^2+y^2-x^2y^2-1=2x^2-y^2+xy-x^2y^2\)
b, \(C+A+B=2x^2-y^2+xy-x^2y^2+2x^2-y^2+xy-x^2y^2=4x^2-2y^2+2xy-2x^2y^2\)
bạn đăng tách bài ra cho mọi người cùng giúp nhé
Bài 1 :
a, \(6x^2-3xy^2+M=x^2+y^2-2xy^2\Leftrightarrow M=-5x^2+y^2+xy^2\)
b, \(N-\left(2xy-4y^2\right)=5xy+x^2-7y^2\)
\(\Leftrightarrow N=5xy+x^2-7y^2+2xy-4y^2=x^2+7xy-11y^2\)
-Nguồn: Tìm giá trị nhỏ nhất của - Bài tập Toán học Lớp 8 - | Lazi.vn - Kết nối tri thức - Giải đáp vấn đề của bạn
-Cách khác tham khảo :Câu hỏi tương tự