\(A=\dfrac{1}{x^2+y^2}+\dfrac{1}{xy}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 7 2021

Áp dụng BĐT Cauchy-Schwarz dạng Engel có:

\(A=\dfrac{1}{x^2+y^2}+\dfrac{1}{2xy}+\dfrac{1}{2xy}\ge\dfrac{4}{x^2+y^2+2xy}+\dfrac{1}{\dfrac{\left(x+y\right)^2}{2}}=\dfrac{4}{\left(x+y\right)^2}+\dfrac{2}{\left(x+y\right)^2}=6\)

Dấu "=" xảy ra khi x=y=\(\dfrac{1}{2}\)

3 tháng 7 2021

áp dụng BDT AM-GM

\(=>x+y\ge2\sqrt{xy}=>1\ge2\sqrt{xy}=>\sqrt{xy}\le\dfrac{1}{2}=>xy\le\dfrac{1}{4}\)

\(A=\dfrac{1}{x^2+y^2}+\dfrac{1}{xy}=\dfrac{1}{x^2+y^2}+\dfrac{1}{2xy}+\dfrac{1}{2xy}\)

\(\ge\dfrac{4}{x^2+2xy+y^2}+\dfrac{1}{2.\dfrac{1}{4}}=\dfrac{4}{\left(x+y\right)^2}+2=4+2=6\)

dấu"=" xảy ra \(< =>x=y=\dfrac{1}{2}\)

23 tháng 1 2021

1) Áp dụng bất đẳng thức AM - GM và bất đẳng thức Schwarz:

\(P=\dfrac{1}{a}+\dfrac{1}{\sqrt{ab}}\ge\dfrac{1}{a}+\dfrac{1}{\dfrac{a+b}{2}}\ge\dfrac{4}{a+\dfrac{a+b}{2}}=\dfrac{8}{3a+b}\ge8\).

Đẳng thức xảy ra khi a = b = \(\dfrac{1}{4}\).

NV
23 tháng 1 2021

2.

\(4=a^2+b^2\ge\dfrac{1}{2}\left(a+b\right)^2\Rightarrow a+b\le2\sqrt{2}\)

Đồng thời \(\left(a+b\right)^2\ge a^2+b^2\Rightarrow a+b\ge2\)

\(M\le\dfrac{\left(a+b\right)^2}{4\left(a+b+2\right)}=\dfrac{x^2}{4\left(x+2\right)}\) (với \(x=a+b\Rightarrow2\le x\le2\sqrt{2}\) )

\(M\le\dfrac{x^2}{4\left(x+2\right)}-\sqrt{2}+1+\sqrt{2}-1\)

\(M\le\dfrac{\left(2\sqrt{2}-x\right)\left(x+4-2\sqrt{2}\right)}{4\left(x+2\right)}+\sqrt{2}-1\le\sqrt{2}-1\)

Dấu "=" xảy ra khi \(x=2\sqrt{2}\) hay \(a=b=\sqrt{2}\)

3. Chia 2 vế giả thiết cho \(x^2y^2\)

\(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{x^2}+\dfrac{1}{y^2}-\dfrac{1}{xy}\ge\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^2\)

\(\Rightarrow0\le\dfrac{1}{x}+\dfrac{1}{y}\le4\)

\(A=\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}-\dfrac{1}{xy}\right)=\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^2\le16\)

Dấu "=" xảy ra khi \(x=y=\dfrac{1}{2}\)

6 tháng 9 2018

Xét \(B=\dfrac{1}{x^2+y^2}+\dfrac{1}{2xy}\)

Áp dụng bất đẳng thức: \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{\left(a+b\right)^2}\), ta có:

\(\dfrac{1}{x^2+y^2}+\dfrac{1}{2xy}\ge\dfrac{4}{x^2+2xy+y^2}=\dfrac{4}{\left(x+y\right)^2}=\dfrac{4}{1^2}=4\)

\(\Rightarrow B\ge4\)

Ta có:

\(\left(x+y\right)^2\ge4xy\)

\(\Leftrightarrow1\ge4xy\)

\(\Leftrightarrow\dfrac{1}{2xy}\ge\dfrac{4xy}{2xy}=2\) (x,y>0)

Khi đó:

\(A=B+\dfrac{1}{2xy}\ge4+2=6\)

Dấu "=" xảy ra \(\Leftrightarrow\) \(x=y=\dfrac{1}{2}\)

6 tháng 9 2018

\(A=\dfrac{1}{x^2+y^2}+\dfrac{1}{xy}\\ =\dfrac{1}{x^2+y^2}+\dfrac{1}{2xy}+\dfrac{2}{4xy}\\ \overset{AM-GM}{\ge}\dfrac{4}{x^2+y^2+2xy}+\dfrac{2}{\left(x+y\right)^2}\\ =\dfrac{4}{\left(x+y\right)^2}+\dfrac{2}{\left(x+y\right)^2}=4+2=6\)

Dấu "=" xảy ra khi \(:\left\{{}\begin{matrix}x^2+y^2=2xy\\x=y\end{matrix}\right.\Leftrightarrow x=y\)

Vậy \(A_{Min}=6\) khi \(x=y\)

16 tháng 11 2015

\(A=\frac{1}{x^2+y^2}+\frac{2}{2xy}\ge\frac{\left(1+\sqrt{2}\right)^2}{x^2+y^2+2xy}=\frac{\left(1+\sqrt{2}\right)^2}{\left(x+y\right)^2}=3+2\sqrt{2}\)

Amin =\(3+2\sqrt{2}\) khi  x =y =1/2

5 tháng 9 2017

điều kiện có thiếu ko vậy

5 tháng 9 2017

à mk vt nhầm để mk sửa

15 tháng 12 2018

\(M=\dfrac{1}{x^{2}+y^{2}}+\dfrac{1}{xy} \\=(\dfrac{1}{x^2+y^2}+\dfrac{1}{2xy})+\dfrac{1}{2xy}\\ \)

\(\ge\dfrac{4}{\left(x+y\right)^2}+\dfrac{1}{2.\left(\dfrac{x+y}{2}\right)^2}=\dfrac{4}{1^2}+\dfrac{1}{2.\left(\dfrac{1}{2}\right)^2}=6\)

Dấu "=" xảy ra<=>x=y=0,5.

NV
15 tháng 12 2018

\(M=\dfrac{1}{x^2+y^2}+\dfrac{1}{xy}=\dfrac{1}{x^2+y^2}+\dfrac{1}{2xy}+\dfrac{1}{2xy}\ge\dfrac{\left(1+1\right)^2}{x^2+y^2+2xy}+\dfrac{1}{\dfrac{\left(x+y\right)^2}{2}}=6\)

\(\Rightarrow M_{min}=6\) khi \(x=y=\dfrac{1}{2}\)

2 tháng 12 2016

\(A=\frac{1}{x^2+y^2}+\frac{2}{xy}+4xy=\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\left(4xy+\frac{1}{4xy}\right)+\frac{5}{4xy}\)

\(\ge\frac{\left(1+1\right)^2}{x^2+2xy+y^2}+2+\frac{5}{\left(x+y\right)^2}=4+2+5=11\)

2 tháng 12 2016

A = \(\frac{7}{2}\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\left(\frac{1}{4xy}+4xy\right)-\frac{5}{2\left(x^2+y^2\right)}\)

Áp dụng bđt cauchy là ra bài

NV
22 tháng 1 2022

\(x+y=xy\Rightarrow\dfrac{1}{x}+\dfrac{1}{y}=1\)

Đặt \(\left(\dfrac{1}{x};\dfrac{1}{y}\right)=\left(a;b\right)\Rightarrow a+b=1\) \(\Rightarrow a^2+b^2\ge\dfrac{1}{2}\left(a+b\right)^2=\dfrac{1}{2}\)

\(P=\dfrac{a^2}{1+a-a^2}+\dfrac{b^2}{1+b-b^2}\ge\dfrac{\left(a+b\right)^2}{2+a+b-\left(a^2+b^2\right)}=\dfrac{1}{3-\left(a^2+b^2\right)}\ge\dfrac{1}{3-\dfrac{1}{2}}=\dfrac{2}{5}\)

Dấu "=" xảy ra khi \(x=y=2\)

3 tháng 5 2017

ta có : \(\left(x+y-1\right)^2=xy\Leftrightarrow x^2+y^2+xy-2x-2y+1=0\)

\(\Leftrightarrow\left(x-1\right)^2+\left(y-1\right)^2+xy-1=0\)

\(0=\left(x-1\right)^2+\left(y-1\right)^2+xy-1\ge xy-1\)

\(\Leftrightarrow xy\le1\)

\(xy=\left(x+y-1\right)^2\le1\Leftrightarrow-1\le x+y-1\le1\)

\(\Leftrightarrow0\le x+y\le2\).

\(VT=\dfrac{1}{2xy}+\dfrac{1}{x^2+y^2}+\dfrac{1}{2xy}+\dfrac{\sqrt{xy}}{x+y}\)

Áp dụng bất đẳng thức cauchy dạng phân thức:

\(\dfrac{1}{2xy}+\dfrac{1}{x^2+y^2}\ge\dfrac{4}{\left(x+y\right)^2}\ge\dfrac{4}{4}=1\)(*)

\(xy\le1\)nên \(\sqrt{xy}\ge xy\)( đúng vì nó tương đương \(\sqrt{xy}\left(1-\sqrt{xy}\right)\ge0\))

\(\Rightarrow\dfrac{1}{2xy}+\dfrac{\sqrt{xy}}{x+y}\ge\dfrac{1}{2\sqrt{xy}}+\dfrac{\sqrt{xy}}{2}\)( vì \(x+y\le2\))

Áp dụng bất đẳng thức cauchy: \(\dfrac{1}{2\sqrt{xy}}+\dfrac{\sqrt{xy}}{2}\ge2\sqrt{\dfrac{1}{2\sqrt{xy}}.\dfrac{\sqrt{xy}}{2}}=1\)(**)

từ (*) và (**) ta có \(VT\ge1+1=2\)

đẳng thức xảy ra khi x=y=1

3 tháng 5 2017

hay qé tks nhìu