Tìm số tự nhiên n để 2 n-7 . 7 là số nguyên tố ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
để 2n-7.7 là số nguyên tố
thi ta ép buột 2n-7=1
=>2n-7=20
=> n-7=0
n=7
vậy bài này n=7
để 2n-7.7 là số nguyên tố
thi ta ép buột 2n-7=1
=>2n-7=20
=> n-7=0
n=7
vậy bài này n=7
để
2n-7.7 là số nguyên tố thì
2n-7=1
mà 20=1
vậy 2n-7=20
n-7=0
n=0+7
n=7
vậy n=7
a) gs cả 2 số đều lẻ thì tổng chẵn
mà 2 số nguyên tố lẻ nên >2 => tổng >2 mà tổng chẵn => ko là sô nguyên tố => trái đề bài
suy ra 1 trong 2 số là số chẵn mà 2 số là số nguyên tố => một số =2
mà 2 số này là 2 số nguyên tố liên tiếp nên số còn lại là 3
b) đặt 19n=p ( p nguyên tố);
vì p nguyên tố nên phân tích p thành tích 2 số tự nhiên ta có p=p*1
=> p=19;n=1
c)đặt (p+1)(p+7)=a ( a nguyên tố)
vì a nguyên tố nên phân tích a thành tích 2 số tự nhiên ta có a=a*1; mà p+1<p+7
nên p+1=1 và p+7=a => p=0;a=7
Gọi d là ước nguyên tố chung của 2.n + 1 và 7.n + 2
\(\Rightarrow\begin{cases}2.n+1⋮d\\7.n+2⋮d\end{cases}\)\(\Rightarrow\begin{cases}7.\left(2n+1\right)⋮d\\2.\left(7.n+2\right)⋮d\end{cases}\)\(\Rightarrow\begin{cases}14.n+7⋮d\\14.n+4⋮d\end{cases}\)
\(\Rightarrow\left(14.n+7\right)-\left(14.n+4\right)⋮d\)
\(\Rightarrow3⋮d\)
Mà d nguyên tố => d = 3
\(\Rightarrow\begin{cases}2.n+1⋮3\\7.n+2⋮3\end{cases}\)\(\Rightarrow\begin{cases}2.n+1-3⋮3\\7.n+2-9⋮3\end{cases}\)\(\Rightarrow\begin{cases}2.n-2⋮3\\7.n-7⋮3\end{cases}\)\(\Rightarrow\begin{cases}2.\left(n-1\right)⋮3\\7.\left(n-1\right)⋮3\end{cases}\)
Mà (2;3)=1; (7;3)=1 => \(n-1⋮3\)
=> n = 3.k + 1 (k ϵ N)
Vậy với \(n\ne3.k+1\left(k\in N\right)\) thì 2.n + 1 và 7.n + 2 là 2 số nguyên tố cùng nhau
2n-7 . 7 là số nguyên tố
2n - 7 = 2 = 20
n - 7 = 0 => n = 7
Để n+1;n+3;n+7;n+9;n+13;n+15 đều là số nguyên tố thì n+1,n+3,n+7;n+9;n+13;n+15 =(1,3,5,7,11,13,17,19….)
*với n+1=1 thì n=0
*với n+1=3 thì n=2
*với n+1=5 thì n=4
*với n+1=7 thì n=6
*Với n+1=11 thì n=10
*với n+1=13 thì n=12
*với n+1=17 thì n=16
*với n+1=19 thì n=18
……….
Suy ra ta có các giá trị n=(0;2;4;6;10;12;16;18…..)
Ta thử các giá trị n trên thấy n=4 là đúng
Vậy n=4