\(2^{n-7}\times7\)là số nguyên tố kết quả n=

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 2 2020

1 ) Vì số nguyên tố chỉ có 2 ước tự nhiên là 1 và chính nó 

Để \(\left(n+3\right)\left(n+1\right)\)là nguyên tố

\(\Rightarrow n+1=1,n+3\)là số nguyên tố do \(n+3>n+1\)

\(n=0\Rightarrow\left(n+3\right)\left(n+1\right)=3\)

\(\Rightarrow n=0\)( chọn )

29 tháng 2 2020

2 ) Tổng 7a5 + 8b4 chia hết cho 9 nên 7 + a + 5 + 8 + b + 4 \(⋮\) 9 , tức là :

24 + a + b \(⋮\) 9 . Suy ra a + b \(\in\){ 3 ; 12 } .

Ta có a + b > 3 ( vì a – b = 6 ) nên a + b = 12 .

Từ a + b = 12 và a – b = 6 , ta có a = ( 12 + 6 ) : 2 = 9  

Suy ra b = 3 .

Thử lại : 795 + 834 = 1629 chia hết cho 9 .

6 tháng 6 2015

- Với n = 0 thì n(n+1)(n + 2) = 0 nên \(\frac{0}{2}+1=1\), ko phải là số nguyên tố

- Với n = 1 thì n + 1 = 2 ; n + 2 = 3. Khi đó \(\frac{n\left(n+1\right)\left(n+2\right)}{2}+1=\frac{1.2.3}{2}+1=4\), không phải số nguyên tố

- Với n = 2 thì n + 1 = 3 ; n + 2 = 4.Khi đó \(\frac{n\left(n+1\right)\left(n+2\right)}{6}+1=\frac{2.3.4}{6}+1=5\), là số nguyên tố 

- Với n = 3 thì n + 1 = 4 ; n + 2 = 5.Khi đó \(\frac{n\left(n+1\right)\left(n+2\right)}{6}+1=\frac{3.4.5}{6}+1=11\), là số nguyên tố

- Với n \(\ge\) 4 thì n + 1 \(\ge\) 5 ; n + 2 \(\ge\) 6. Khi đó \(\frac{n\left(n+1\right)\left(n+2\right)}{6}+1\ge\frac{4.5.6}{6}+1=21\)

, luôn là hợp số.

                                Vậy chỉ có kết quả là 5 và 11 là thỏa mãn.

6 tháng 6 2015

thì bạn phải chỉ rõ, lí luận chứ lỡ đâu cũng trong muôn vàn số vẫn có trường hợp đặc biệt

6 tháng 6 2015

n=1,p=2

n=2,p=5

n=3,p=11

9 tháng 3 2017

N=1!!!

10 tháng 3 2017

sai bet te le nhe

24 tháng 10 2017

A = n^2 . 3n là số nguyên tố . 

Mình nói thật là bài này nó rất là phi thường 

A = n^2 . 3 . n = n^3 . 3

Vậy A có các ước là 1 ; 3 ; n ; n^2 ; n^3 ; ...

Vậy làm sao có n để A là số nguyên tố được . 

24 tháng 10 2017

Tc:n2.3n=n3.3

đến đây cạn lời.chỉ biết kq là 3 

12 tháng 7 2016

để A là số nguyên tố thì phải đảm bảo A thuộc N

để A thuộc N

=> 2n + 8  chia hết cho n + 1

=> 2.(n + 1) + 6 chia hết cho  n+ 1

=> 6  chia hết cho n +1

=> n+ 1 \(\in\) Ư(6 ) = {1;2;3;6}

=> n+1 =1   =>  n = 0

      n+1 = 2   => n = 1 (snt)

      n+1 =3  =>  n = 2 (sgt)

      n + 1 = 6 => n = 5  (snt)

=> n = {1;2;5}

18 tháng 3 2018

a, (n+1)(n+3) là SNT <=> 1 ts = 1; ts còn lại là SNT.

TH1: n+1=1 => n=0 => n+3=3 (t/m)

TH2: n+3=1 => n=-2 => n+1=-1 (không t/m)

=> n=0.

b, A không tối giản => ƯCLN(n+3;n-5) >1

=> ƯCLN(8;n-5) >1 => n-5 chẵn => n lẻ.

18 tháng 3 2018

Ko có số tự nhiên n thõa mãn điều kiện. k mik nhé nếu muốn hỏi j thêm về câu này thì cứ nhắn tin riêng cho mik

3 tháng 8 2016

Để A là số nguyên thì 7 phải chia hết cho (n + 2) \(\Rightarrow\left(n+2\right)\inƯ\left(7\right)=\left\{1;-1;7;-7\right\}\)

+ Với n + 2 = 1 => n = -1

+ Với n + 2  = -1 => n = -3

+ Với n + 2 = 7 => n = 5

+ Với n + 2 = -7 => n = -9

                              Vậy n = {-1;-3;5;-9} thì A là số nguyên

Để n + 2 là số nguyên thì 

 \(n+2\inƯ\left(7\right)\)

\(\Rightarrow n+2=\left\{-1;1;-7;7\right\}\)

\(\Rightarrow n+2=-1\Rightarrow n=-3\)

\(\Rightarrow n+2=1\Rightarrow n=-1\)

\(\Rightarrow n+2=7\Rightarrow n=5\)

\(\Rightarrow n+2=-7\Rightarrow n=-9\)