K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 8 2021

c) |-x+7|=24

\(\left[{}\begin{matrix}-x+7=24\\-x+7=-24\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-17\\x=31\end{matrix}\right.\)

d) |x+8|+15=0

|x+8|=0-15

|x+8|=-15

⇒x=∅

e) |x|+|x-3|=0

\(\Rightarrow\left[{}\begin{matrix}x=0\\x-3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)

c: Ta có: \(\left|-x+7\right|=24\)

\(\Leftrightarrow\left[{}\begin{matrix}7-x=24\\7-x=-24\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-17\\x=31\end{matrix}\right.\)

7 tháng 9 2023

6) Ta có: \(\widehat{xOy}\) và \(\widehat{yOz}\) là 2 góc kề bù nên:

\(\widehat{xOy}+\widehat{yOz}=180^o\)

\(\Rightarrow\widehat{yOz}=180^o-80^o=100^o\) 

Mà: Om là tia phân giác của \(\widehat{xOy}\) nên:

\(\widehat{xOm}=\widehat{mOy}\)

\(\Rightarrow\widehat{mOy}=\dfrac{\widehat{xOy}}{2}=\dfrac{80^o}{2}=40^o\)

On là tia phân giác của \(\widehat{yOz}\) nên:

\(\widehat{yOn}=\widehat{nOy}\)

\(\Rightarrow\widehat{nOy}=\dfrac{\widehat{yOz}}{2}=\dfrac{100^o}{2}=50^o\)

Mà: \(\widehat{mOn}=\widehat{mOy}+\widehat{nOy}\)

\(\Rightarrow\widehat{mOn}=50^o+40^o=90^o\)

3 tháng 10 2021

\(c,\Rightarrow\left|x-\dfrac{1}{9}\right|=-\dfrac{4}{5}\\ \Rightarrow x\in\varnothing\left(\left|x-\dfrac{1}{9}\right|\ge0>-\dfrac{4}{5}\right)\\ d,\Rightarrow\left\{{}\begin{matrix}3x-2=0\\4y-7=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{2}{3}\\y=\dfrac{7}{4}\end{matrix}\right.\\ e,\Rightarrow\left\{{}\begin{matrix}2x+1=0\\x-y=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{2}\\x=y=-\dfrac{1}{2}\end{matrix}\right.\Rightarrow x=y=-\dfrac{1}{2}\)

a: \(\left(x-1.2\right)^2=4\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1.2=2\\x-1.2=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3.2\\x=-0.8\end{matrix}\right.\)

b: Ta có: \(\left(x+1\right)^3=-125\)

\(\Leftrightarrow x+1=-5\)

hay x=-6

2 tháng 10 2021

c) 3^(4-x)=27

3^(4-x) = 3^3

4-x = 3

x = 1

10 tháng 4 2023

Để phương trình có 2 nghiệm phân biệt thì:

\(\Delta>0\\ \Leftrightarrow\left(-5\right)^2-4.1.\left(m+4\right)>0\\ \Leftrightarrow25-4m-16>0\\\Leftrightarrow9-4m>0\\ \Leftrightarrow m< \dfrac{9}{4}\)

Theo viét: 

\(\left\{{}\begin{matrix}x_1+x_2=5\\x_1x_2=m+4\end{matrix}\right.\)

c,

\(\left|x_1-x_2\right|=3\\ \Leftrightarrow\left(x_1-x_2\right)^2=9\\ \Leftrightarrow x_1^2-2x_1x_2+x_2^2=9\\ \Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2=9\\ \Leftrightarrow5^2-4\left(m+4\right)=9\\ \Leftrightarrow25-4m-16=9\\ \Leftrightarrow m=0\left(nhận\right)\) 

d.

\(\left|x_1\right|+\left|x_2\right|=4\\ \)

Xét trường hợp 1: hai nghiệm đều dương:

ta có:

\(x_1+x_2=4\)

5 = 4 (vô lý)

Loại trường hợp này.

Xét trường hợp 2: hai nghiệm đều âm, tương tự ta loại trường hợp này.

Xét trường hợp 3: 

\(x_1< 0< x_2\)

=> \(x_2-x_1=4\)

<=> \(x_2+x_1-2x_1=4\)

=> \(5-2x_1=4\)

=> \(x_1=\dfrac{1}{2}\)

\(x_2< 0< x_1\)

 \(x_1-x_2=4\\ \Leftrightarrow x_1+x_2-2x_2=4\\ \Leftrightarrow5-2x_2=4\\ \Rightarrow x_2=\dfrac{1}{2}\)

Có: \(x_1x_2=m+4\\\)

<=> \(\dfrac{1}{2}.\dfrac{1}{2}=m+4\)

=> m = -3,75 (nhận)

e.

Theo viét và theo đề ta có:

\(\left\{{}\begin{matrix}3x_1+4x_2=6\left(1\right)\\x_1+x_2=5\left(2\right)\\x_1x_2=m+4\left(3\right)\end{matrix}\right.\)

Từ (1) có \(x_1=\dfrac{6-4x_2}{3}=2-\dfrac{4}{3}x_2\) (x)

Thế (x) vào (2) được \(2-\dfrac{4}{3}x_2+x_2=5\)

=> \(x_2=-9\) (xx)

Thế (xx) vào (1) được \(3x_1+4.\left(-9\right)=6\)

=> \(x_1=14\) (xxx)

Thế (xx) và (xxx) vào (3) được:

\(14.\left(-9\right)=m+4\)

=> m = -130 (nhận)

h.

\(x_1\left(1-3x_2\right)+x_2\left(1-3x_1\right)=m^2-23\)

<=> \(x_1-3x_1x_2+x_2-3x_1x_2=m^2-23\)

<=> \(x_1+x_2-6x_1x_2=m^2-23\)

<=> \(5-6.\left(m+4\right)=m^2-23\)

<=> \(5-6m-20-m^2+23=0\)

<=> \(-m^2-6m+8=0\)

\(\Delta=\left(-6\right)^2-4.\left(-1\right).8=68\)

\(m_1=\dfrac{6+\sqrt{68}}{2.\left(-1\right)}=-3-\sqrt{17}\left(nhận\right)\)

\(m_2=\dfrac{6-\sqrt{68}}{2.\left(-1\right)}=-3+\sqrt{17}\left(nhận\right)\)

T.Lam

Mình không chắc chắn ở câu d, mình lên đây để ôn bài thi tiện thể giúp được bạn phần nào.

 

CM
22 tháng 12 2022

Em đưa cả ngữ liệu và đề bài đầy đủ lên đây để thầy cô và các bạn trong cộng đồng có thể hỗ trợ nhé!

27 tháng 9 2021

dài thế

27 tháng 9 2021

Tách rời các bài thì mới có người giải nha 

8 tháng 8 2023

d) \(y=4sinx-2cos2x-1\)

\(=4sinx-2\left(1-2sin^2x\right)-1\)

\(=4sin^2x+4sinx-3\)

Đặt \(t=sinx,t\in\left[-1;1\right]\)

\(y=f\left(t\right)=4t^2+4t-3\) \(\Leftrightarrow f'\left(t\right)=8t+4\)

\(f'\left(t\right)=0\Leftrightarrow t=-\dfrac{1}{2}\)

Vẽ BBT với \(t\in\left[-1;1\right]\) ta được 

\(minf\left(t\right)=miny=-4\Leftrightarrow t=-\dfrac{1}{2}\)\(\Leftrightarrow sinx=-\dfrac{1}{2}\)\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{\pi}{6}+k2\pi\\x=\dfrac{7\pi}{6}+k2\pi\end{matrix}\right.\) ( k thuộc Z)

\(maxf\left(t\right)=miny=5\Leftrightarrow t=1\)\(\Leftrightarrow sinx=1\) \(\Leftrightarrow x=\dfrac{\pi}{2}+k2\pi\) ( k thuộc Z)

Vậy...

8 tháng 8 2023

e) \(y=3sin2x+8cos^2x-1\)

\(=3sin2x+4\left(2cos^2x-1\right)+3\)

\(=3sin2x+4cos2x+3\)

\(=5\left(\dfrac{3}{5}sin2x+\dfrac{4}{5}cos2x\right)+3\)

Đặt \(cosu=\dfrac{3}{5}\Leftrightarrow sinu=\dfrac{4}{5}\)

\(y=5\left(sin2x.cosu+cos2x.sinu\right)+3=5.sin\left(2x+u\right)+3\)

Có \(-1\le sin\left(2x+u\right)\le1\) \(\Leftrightarrow-2\le y\le8\)

\(maxy=8\Leftrightarrow sin\left(2x+u\right)=1\) \(\Leftrightarrow2x+u=\dfrac{\pi}{2}+k2\pi\) \(\Leftrightarrow x=-\dfrac{u}{2}+\dfrac{\pi}{4}+k\pi\)\(\Leftrightarrow x=-\dfrac{1}{2}.arccos\dfrac{3}{5}+\dfrac{\pi}{4}+k\pi\) ( k thuộc Z)

\(miny=-2\Leftrightarrow sin\left(2x+u\right)=-1\)\(\Leftrightarrow x=-\dfrac{1}{2}.\dfrac{arccos3}{5}-\dfrac{\pi}{4}+k\pi\) ( k thuộc Z)

Vậy...

15 tháng 2 2022

a,PTBĐ tự xự 

b,Thể loại truyền thuyết

 

15 tháng 2 2022

Bn ơi mình chỉ cần làm câu d,e,f thôi còn câu a,b,c mik làm rồi