tìm n\(\in\)Z:
a, 2n+1\(⋮\)n+1
b,n-3\(⋮\)n+1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{2\left(n+1\right)-1}{n+1}=\frac{2\left(n+1\right)}{n+1}-\frac{1}{n+1}\)
\(=2-\frac{1}{n+1}\)
=> \(1⋮n+1\)
Ta có bảng sau:
1
A, \(\frac{N-1}{N-3}\)=> N - 1 CHIA HẾT CHO N - 3
=> N + 3 - 4 CHIA HẾT CHO N - 3
=> N - 3 E Ư(4) = { -1 ; -2 ; -4 ; 1 ; 2 ; 4 }
TA CÓ BẢNG
N - 3 | -1 | -2 | -4 | 1 | 2 | 4 |
N | 2 | 1 | -1 | 4 | 5 | 7 |
VẬY N = { 2 ; 1 ; -1 ; 4 ; 5 ; 7 }
MÌNH CHỈ LÀM ĐƯỢC CÂU A THÔI NHÉ
\(a)\,\,A=\dfrac{13}{21} \Leftrightarrow \dfrac{2n+3}{4n+1}=\dfrac{13}{21} \\ \Leftrightarrow 21(2n+3)=13(4n+1)\\\Leftrightarrow 42n+63=52n+13\\\Leftrightarrow 42n-52n=13-63 \\\Leftrightarrow -10n=-50\\\Leftrightarrow n=(-50):(-10)\\\Leftrightarrow n=5\)
a,Ta có:
2n+1\(⋮\)n+1
<=>2n+1-(n+1)\(⋮\)n+1
<=>2n+1-2(n+1)\(⋮\)n+1
<=>2n+1-2n-2\(⋮\)n+1
<=>-1\(⋮\)n+1
=>n+1\(\in\){-1;1}
=>n\(_{\in}\){-2;0}
Vậy n\(\in\){-2;0}
b,Ta có:
n-3\(⋮\)n+1
<=>n-3-(n+1)\(⋮\)n+1
<=>n-3-n-1\(⋮\)n+1
<=>-4\(⋮\)n+1
=>n+1\(\in\){-1;1;-2;2;-4;4}
=>n\(\in\){-2;0;-3;-5;3}
Vậy n\(\in\){-2;0;-3;-5;3}
\(a.\)\(2n+1⋮n+1\Leftrightarrow2n+2-1⋮n+1\Leftrightarrow2\left(n+1\right)-1⋮n+1\)
\(\Leftrightarrow1⋮n+1\)(vì \(2\left(n+1\right)⋮n+1\))
\(\Leftrightarrow n+1\inƯ\left(1\right)\Leftrightarrow n+1\in\left\{\pm1\right\}\Leftrightarrow n\in\left\{0;-2\right\}\)
\(Vậy\)\(n\in\left\{0;-2\right\}\)
\(b.n-3⋮n+1\Leftrightarrow n+1-4⋮n+1\Leftrightarrow4⋮n+1\)\(\left(vìn+1⋮n+1\right)\)
\(\Leftrightarrow n+1\inƯ\left(\text{4}\right)\Leftrightarrow n+1\in\left\{\pm1;\pm2;\pm4\right\}\)\(\Leftrightarrow n\in\left\{0;-2;1;-3;3;-5\right\}\)
\(Vậy\)\(n\in\left\{0;-2;1;-3;3;-5\right\}\)