CMR a/b + b/a > 2 với a; b cùng dấu
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1
Ta có : \(\frac{a}{b}=\frac{c}{d}=>\left(\frac{a}{b}+1\right)=\left(\frac{c}{d}+1\right)\left(=\right)\frac{a+b}{b}=\frac{c+d}{d}\)
=> ĐPCM
Câu 2
Ta có \(\frac{a}{b}=\frac{c}{d}=>\frac{b}{a}=\frac{d}{c}=>\left(\frac{b}{a}+1\right)=\left(\frac{d}{c}+1\right)\left(=\right)\frac{b+a}{a}=\frac{d+c}{c}=>\frac{a}{b+a}=\frac{c}{d+c}\)
=> ĐPCM
Câu 3
Câu 3
Ta có \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)(=) (a+b).(c-d)=(a-b).(c+d)(=)ac-ad+bc-bd=ac+ad-bc-bd(=)-ad+bc=ad-bc(=) bc+bc=ad+ad(=)2bc=2ad(=)bc=ad=> \(\frac{a}{b}=\frac{c}{d}\)
=> ĐPCM
Câu 4
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
\(=>\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)
Ta có \(\frac{ac}{bd}=\frac{bk.dk}{bd}=k^2\left(1\right)\)
Lại có \(\frac{a^2+c^2}{b^2+d^2}=\frac{b^2k^2+c^2k^2}{b^2+d^2}=\frac{k^2.\left(b^2+d^2\right)}{b^2+d^2}=k^2\left(2\right)\)
Từ (1) và (2) => ĐPCM
Đề:CM `sqrt{a+b}+sqrt{a-b}<2sqrta(a>b>0)`
`<=>(sqrt{a+b}+sqrt{a-b})^2<4a`
`<=>a+b+a-b+2sqrt{a^2-b^2}<4a`
`<=>2sqrt{a^2-b^2}<2a`
`<=>sqrt{a^2-b^2}<a`
`<=>a^2-b^2<a^2` luôn đúng vì `b>0=>b^2>0=>a^2-b^2<a^2`
(a + b)(a - b) = (a+b).a - (a + b).b =( a2 + ab) - (ab + b2) = a2 + ab - ab - b2 = a2 - b2
Vậy (a + b)(a - b) = a2 - b2 (đpcm)
Bài 1: Theo đề bài: \(VT=\left(a-1\right)+\frac{1}{\left(a-1\right)}+1\ge2\sqrt{\left(a-1\right).\frac{1}{a-1}}+1=2+1=3^{\left(đpcm\right)}\)
Đẳng thức xảy ra khi \(\left(a-1\right)=\frac{1}{a-1}\Leftrightarrow a=2\)
Bài 2: \(BĐT\Leftrightarrow\left(a^2+2\right)^2\ge4\left(a^2+1\right)\)
\(\Leftrightarrow a^4+4a^2+4\ge4a^2+4\)
\(\Leftrightarrow a^4\ge0\) (đúng). Đẳng thức xảy ra khi a = 0
Bài 3: Hình như sai đề thì phải ạ. Nếu a = 1,5 ; b = 1 thì \(\frac{19}{10}=1,9< 3\)
Nếu a và b khác dấu thì bđt hiển nhiên đúng vì 1 vế ≥0 và 1 vế ≤0
Nếu a và b cùng dấu => \(\dfrac{a^2}{b^2}\)+\(\dfrac{b^2}{a^2}\)<=>a4+b4≥ab3+a3b(nhân 2 vế với số dương ab)<=> a4+b4≥ab(a2+b2) (*)
ta có (x-y)2≥0 <=> x2+y2≥2xy <=> 2(x2+y2)≥ x2+2xy+y2=(x+y)2
áp dụng bđt trên
=> 2(a4+b4):2≥\(\dfrac{\left(a^2+b^2\right)\left(a^2+b^2\right)}{2}\)≥\(\dfrac{2ab\left(a^2+b^2\right)}{2}\)(bđt cô si)<=>a4+b4≥ab3+a3b(đpcm)
Bài 1:
a) Áp dụng BĐT Cô-si:
\(VT=a-1+\frac{1}{a-1}+1\ge2\sqrt{\frac{a-1}{a-1}}+1=2+1=3\)
Dấu "=" xảy ra \(\Leftrightarrow a=2\).
b) BĐT \(\Leftrightarrow a^2+2\ge2\sqrt{a^2+1}\)
\(\Leftrightarrow a^2+1-2\sqrt{a^2+1}+1\ge0\)
\(\Leftrightarrow\left(\sqrt{a^2+1}-1\right)^2\ge0\) ( LĐ )
Dấu "=" xảy ra \(\Leftrightarrow a=0\).
Bài 2: tương tự 1b.
Bài 3:
Do \(a,b,c\) dương nên ta có các BĐT:
\(\frac{a}{a+b+c}< \frac{a}{a+b}< \frac{a+c}{a+b+c}\)
Tương tự: \(\frac{b}{a+b+c}< \frac{b}{b+c}< \frac{b+a}{a+b+c};\frac{c}{a+b+c}< \frac{c}{c+a}< \frac{c+b}{a+b+c}\)
Cộng theo vế 3 BĐT:
\(\frac{a+b+c}{a+b+c}< \frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< \frac{2\left(a+b+c\right)}{a+b+c}\)
\(\Leftrightarrow1< \frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< 2\)( đpcm )
Biến đổi tương đương ta có
\(\frac{a^2}{b^2}+\frac{b^2}{a^2}-\frac{a}{b}-\frac{b}{a}\ge0\)
\(\Leftrightarrow\frac{a^4+b^4-a^3b-ab^3}{a^2b^2}\ge0\)
\(\Leftrightarrow a^4+b^4-a^3b-ab^3\ge0\)
\(\Leftrightarrow a^4+b^4-2a^2b^2+2a^2b^2-a^3b-ab^3\ge0\)
\(\Leftrightarrow\left(a^2-b^2\right)^2-ab\left(a^2-2ab+b^2\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\left(a+b\right)^2-ab\left(a-b\right)^2\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\left(\left(a+b\right)^2-ab\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\) (Luôn đúng)
\(\frac{a}{b}+\frac{b}{a}-2=\frac{a^2+b^2}{ab}-2=\frac{a^2-2ab+b^2}{ab}=\frac{\left(a+b\right)^2}{ab}\)lớn hơn 0 nênđiều kia đúng