
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.



có
\(a>b\Leftrightarrow a-b>0\) (1)
\(a,b>0\Leftrightarrow2ab>0\)
\(a^2+2ab+b^2>a^2+b^2\Leftrightarrow\left(a+b\right)^2-\left(a^2+b^2\right)>0\) (2)
nhân 1 ,2 thì dc
\(\left(a-b\right)\left\{\left(a+b\right)^2-\left(a^2+b^2\right)\right\}>0\)
\(\frac{\left(a-b\right)\left(a+b\right)^2-\left(a-b\right)\left(a^2+b^2\right)}{\left(a+b\right)\left(a^2+b^2\right)}>0\) " nhân 2 vế cho 1/(a+b(a^2+b^2)
\(\frac{\left(a-b\right)\left(a+b\right)\left(a+b\right)}{\left(a+b\right)\left(a^2+b^2\right)}-\frac{\left(a-b\right)\left(a^2+b^2\right)}{\left(a+b\right)\left(a^2+b^2\right)}>0\)
\(\frac{a^2-b^2}{a^2+b^2}-\frac{a-b}{a+b}>\frac{0\Leftrightarrow a^2-b^2}{a^2+b^2}>\frac{a-b}{a+b}\)


Đề:CM `sqrt{a+b}+sqrt{a-b}<2sqrta(a>b>0)`
`<=>(sqrt{a+b}+sqrt{a-b})^2<4a`
`<=>a+b+a-b+2sqrt{a^2-b^2}<4a`
`<=>2sqrt{a^2-b^2}<2a`
`<=>sqrt{a^2-b^2}<a`
`<=>a^2-b^2<a^2` luôn đúng vì `b>0=>b^2>0=>a^2-b^2<a^2`