K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 11 2015

(a + b)(a - b) = (a+b).a - (a + b).b =( a2 + ab) - (ab + b2) = a2 + ab - ab - b2 = a2 - b2

Vậy (a + b)(a - b) = a2 - b2 (đpcm)  

22 tháng 3 2017

Có : \(\frac{a}{b}+\frac{b}{a}=\frac{a^2+b^2}{ab}\) (1)

mà \(\left(a-b\right)^2>=0\)<=> \(a^2-2ab+b^2>=0\)<=> \(a^2+b^2>=2ab\)<=> \(\frac{a^2+b^2}{ab}>=2\)(2)

Từ (1) và (2) => \(\frac{a}{b}+\frac{b}{a}>=2\)

22 tháng 3 2017

Vì a;b > 0 . Áp dụng bđt AM - GM ta có :

\(\frac{a}{b}+\frac{b}{a}\ge2\sqrt{\frac{a}{b}.\frac{b}{a}}=2.1=2\) 

Dấu "=" xảy ra <=> a = b

14 tháng 3 2018

Ta có: (a-b)2\(\ge\)0

<=> a2 - 2ab +b2\(\ge\)0

<=> a2 +b2\(\ge\)2ab

Do a, b thuộc N* => ab > 0. Chia cả 2 vế cho ab ta được:

\(\frac{a^2+b^2}{ab}\ge2\) <=> \(\frac{a^2}{ab}+\frac{b^2}{ab}\ge2\) <=> \(\frac{a}{b}+\frac{b}{a}\ge2\)=> đpcm