Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
CHo a;b;c thuộc N* . CMR : P=\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\) không phải là số tự nhiên
- CM: P > 1
\(P=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}\)
\(P>\frac{a+b+c}{a+b+c}\)
\(P>1\left(1\right)\)
- CM: P < 2
Áp dụng \(\frac{a}{b}< 1\Leftrightarrow\frac{a}{b}< \frac{a+c}{b+c}\) (a;b;c \(\in\) N*), ta có:
\(P=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< \frac{a+c}{a+b+c}+\frac{a+b}{a+b+c}+\frac{b+c}{a+b+c}\)
\(P< \frac{2.\left(a+b+c\right)}{a+b+c}\)
\(P< 2\left(2\right)\)
Từ (1) và (2) => 1 < P < 2
=> P không phải số tự nhiên (đpcm)
Giả sử a\(\ge\)b. Ta có thể viết a = b + m(m\(\ge\)0).Ta có:
\(\frac{a}{b}+\frac{b}{a}=\frac{b+m}{b}+\frac{b}{b+m}=1+\frac{m}{b}+\frac{b}{b+m}\ge1+\frac{m}{b+m}+\frac{b}{b+m}=1+\frac{m+b}{b+m}=2\)
Vậy \(\frac{a}{b}+\frac{b}{a}\ge2\)
a)
\(\frac{n+1}{n+2}=\frac{n+2-1}{n+2}=\frac{n+2}{n+2}-\frac{1}{n+2}\\\)
vì 1\(⋮\) n+2=>n+2\(\in\) Ư (1)
n+2=1
n=1-2-1
n+2=-1
n=-1-2=-3
Có : \(\frac{a}{b}+\frac{b}{a}=\frac{a^2+b^2}{ab}\) (1)
mà \(\left(a-b\right)^2>=0\)<=> \(a^2-2ab+b^2>=0\)<=> \(a^2+b^2>=2ab\)<=> \(\frac{a^2+b^2}{ab}>=2\)(2)
Từ (1) và (2) => \(\frac{a}{b}+\frac{b}{a}>=2\)
Vì a;b > 0 . Áp dụng bđt AM - GM ta có :
\(\frac{a}{b}+\frac{b}{a}\ge2\sqrt{\frac{a}{b}.\frac{b}{a}}=2.1=2\)
Dấu "=" xảy ra <=> a = b