\(\left(x-2016\right)^2+\left(x+2017\right)^2\) Tìm Gtnn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vi x+2016> hoac bang 0 va x+2017>hoac =0=>gtnn cua hang thuc tren =0
a) \(A=\left|x-2016\right|+2017\)
Vì: \(\left|x-2016\right|\ge0\)
=> \(\left|x-2016\right|+2017\ge2017\)
Vậy GTNN của A lòa 2017 khi\(x-2016=0\Leftrightarrow x=2016\)
b) \(\left|x-2016\right|+\left|y-2017\right|+2018\)
Vì: \(\begin{cases}\left|x-2016\right|\ge0\\\left|x-2017\right|\ge0\end{cases}\)\(\Leftrightarrow\left|x-2016\right|+\left|x-2017\right|\ge0\)
=> \(\left|x-2016\right|+\left|y-2017\right|+2018\ge2018\)
Vậy GTNN của B là 2018 khi \(\begin{cases}x-2016=0\\y-2017=0\end{cases}\)\(\Leftrightarrow\begin{cases}x=2016\\y=2017\end{cases}\)
a)Ta có: |x-2016|\(\ge\) 0
=>|x-2016|+2017 \(\ge\) 2017
hay A \(\ge\) 2017
GTNN của A = 2017 khi |x-2016|=0
=>x-2016=0
=>x=0+2016
=>x=2016
Vậy GTNN của A=2017 khi x=2016
b)Tương tự câu a)
a) Ta có: |x-2016| luôn lớn hơn hoặc bằng 0
=>|x-2016| + 2017 luôn lớn hơn hoặc bằng 2017
Dấu bằng xảy ra khi |x-2016|=0
=> x-2016=0
=>x=2016
vậy GTNN của A bằng 2017 khi x=2016
b)Ta có |x-2016| + |y-2017| luôn lớn hơn hoặc bằng 0
=>|x-2016|+|y-2-17| + 2018 luôn lớn hơn hoặc bằng 2018
Dấu bằng xảy ra khi
\(\left[\begin{array}{nghiempt}x-1016=0\\y-1017=0\end{cases}=\left[\begin{array}{nghiempt}x=2016\\y=2017\end{array}\right.}\)
Với mọi x ta có :
\(\left|x+2018\right|=\left|-x-2018\right|\)
\(\Leftrightarrow\left|x+2016\right|+\left|x+2018\right|=\left|x+2016\right|+\left|-x-2018\right|\)
\(\Leftrightarrow\left|x+2016\right|+\left|-x-2018\right|\ge\left|\left(x+2016\right)+\left(-x-2018\right)\right|\)
\(\Leftrightarrow\left|x+2016\right|+\left|-x-2018\right|\ge\left|-2\right|\)
\(\Leftrightarrow\left|x+2016\right|+\left|-x-2018\right|\ge2\)
Mà \(\left|x+2017\right|\ge0\)
\(\Leftrightarrow\left|x+2016\right|+\left|-x-2018\right|+\left|x+2017\right|\ge2\)
Dấu "=" xảy ra khi :
\(\left\{{}\begin{matrix}\left(x+2016\right)\left(-x-2018\right)\ge0\left(1\right)\\\left|x+2017\right|=0\left(2\right)\end{matrix}\right.\)
Từ \(\left(1\right)\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+2016\ge0\\-x-2018\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}x+2016\le0\\-x-2018\le0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge-2016\\-2018\ge x\end{matrix}\right.\\\left\{{}\begin{matrix}x\le-2016\\-2018\le x\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}-2016\ge x\ge-2018\\x\in\varnothing\end{matrix}\right.\)
\(\Leftrightarrow-2016\ge x\ge-2018\left(I\right)\)
Từ \(\left(2\right)\Leftrightarrow x+2017=0\)
\(\Leftrightarrow x=-2017\left(II\right)\)
Từ \(\left(I\right)+\left(II\right)\Leftrightarrow GTNN\) của \(\left|x+2016\right|+\left|x+2017\right|+\left|x+2017\right|=2\Leftrightarrow x=-2017\)
GTNN là 8132544,5 tại x=-0,5
\(\left(x-2016\right)^2+\left(x+2017\right)^2=x^2-2.2016.x+2016^2+x^2+2.2017.x+2017^2=2x^2+2x+8132545\)Đến đây nếu là toán vio thì mình nhập casio 1 cái là ra, còn nếu bạn muốn giải tự luận thì mk sẽ làm:
\(2x^2+2x+8132545=\left(\sqrt{2x}\right)^2+2.\sqrt{2x}.\left(\frac{\sqrt{2}}{2}\right)+\left(\frac{\sqrt{2}}{2}\right)^2-\left(\frac{\sqrt{2}}{2}\right)^2+8132545=\left(\sqrt{2x}+\frac{\sqrt{2}}{2}\right)^2+8132544,5\)
Ta có: Cái vế bình phương >=0, vậy GTNN là 8132544,5 tại x=-0,5, chỗ này thì bình thường, chắc bạn biết