Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
|x−2015|+|x−2016|+|x−2017||x−2015|+|x−2016|+|x−2017|
=|x−2016|+|x−2015|+|x−2017|=|x−2016|+|x−2015|+|x−2017|
=|x−2016|+(|x−2015|+|x−2017|)=|x−2016|+(|x−2015|+|x−2017|)
∗)∗) Áp dụng BĐT |a|+|b|≥|a+b||a|+|b|≥|a+b| ta có:
|x−2015|+|x−2017|=|x−2015|+|x−2017|= |x−2015|+|2017−x||x−2015|+|2017−x|
≥|x−2015+2017−x|=|2|=2≥|x−2015+2017−x|=|2|=2
∗)∗) Dễ thấy: |x−2016|≥0∀x|x−2016|≥0∀x
⇔|x−2015|+|x−2016|+|x−2017|⇔|x−2015|+|x−2016|+|x−2017| ≥2≥2
Đẳng thức xảy ra ⇔⎧⎩⎨⎪⎪x−2015≥0x−2016=0x−2017≤0⇔⎧⎩⎨⎪⎪x≥2015x=2016x≤2017⇔{x−2015≥0x−2016=0x−2017≤0⇔{x≥2015x=2016x≤2017 ⇔x=2016⇔x=2016
Vậy GTNNGTNN của biểu thức là 2⇔x=2016
Ta có:
|x − 2015| + |x − 2016| + |x − 2017|
= |x − 2016| + |x − 2015| + |x - 2017|
= |x − 2016|+(| x− 2015| + |x − 2017|)
∗)∗) Áp dụng BĐT |a| + |b| ≥ |a + b|, ta có:
|x − 2015|+|x − 2017| = |x − 2015|+|2017 − x|
≥ |x − 2015 + 2017 − x| = |2| = 2
∗) Dễ thấy: |x − 2016| ≥ 0 ∀ x
⇔|x − 2015| + |x − 2016| + |x − 2017|
Đẳng thức xảy ra ⇔x−2015≥0
x−2016=0
x−2017≤0 ⇔x≥2015 (Loại)
x=2016 (TM)
x≤2017 (Loại)
Vậy x=2016
\(A=\frac{\left|x-2017\right|+2018}{\left|x-2017\right|+2019}\)
\(A=\frac{\left|x-2017\right|+2019-1}{\left|x-2017\right|+2019}\)
\(A=1-\frac{1}{\left|x-2017\right|+2019}\)
A nhỏ nhất khi \(1-\frac{1}{\left|x-2017\right|+2019}\)nhỏ nhất
khi \(\frac{1}{\left|x-2017\right|+2019}\)lớn nhất
khi \(\left|x-2017\right|+2019\)nhỏ nhất
mà |x - 2017| \(\ge0\)
=> |x - 2017| + 2019 \(\ge2019\)
Vậy A nhỏ nhất khi A = 2019 khi x - 2017 = 0 => x = 2017
\(A=\dfrac{\left|x-2016\right|+2017}{\left|x-2016\right|+2018}=1-\dfrac{1}{\left|x-2016\right|+2018}\)
Để A nhỏ nhất thì \(\dfrac{1}{\left|x-2016\right|+2018}\) lớn nhất thì \(\left|x-2016\right|+2018\) nhỏ nhất
Ta có: \(\left|x-2016\right|\ge0\)
\(\Rightarrow\left|x-2016\right|+2018\ge2018\)
\(\Rightarrow\dfrac{1}{\left|x-2016\right|+2018}\le\dfrac{1}{2018}\)
\(\Rightarrow A=1-\dfrac{1}{\left|x-2016\right|+2018}\ge1-\dfrac{1}{2018}=\dfrac{2017}{2018}\)
Dấu " = " khi \(\left|x-2016\right|=0\Rightarrow x=2016\)
Vậy \(MIN_A=\dfrac{2017}{2018}\) khi x = 2016
Ta có :
\(A=\dfrac{\left|x-2016\right|+2017}{\left|x-2016\right|+2018}=\dfrac{\left|x-2016\right|+2018-1}{\left|x-2016\right|+2018}=1-\dfrac{1}{\left|x-2016\right|+2018}\)Vì \(\left|x-2016\right|\ge0\Rightarrow\left|x-2016\right|+2018\ge2018\)
\(\Rightarrow\dfrac{1}{\left|x-2016\right|+2018}\le\dfrac{1}{2018}\)
\(\Rightarrow1-\dfrac{1}{\left|x-2016\right|+2018}\ge\dfrac{2017}{2018}\)
\(\Rightarrow A_{min}=\dfrac{2017}{2018}\)
<=> |x - 2016| = 0
<=> x = 2016
\(A=\left|2018-x\right|+\left|x-2017\right|\ge2018-x+x-2017=1\)
dấu = xãy ra khi \(\left(2018-x\right)\left(x-2017\right)\ge0\Leftrightarrow2017\le x\le2018\)
vậy \(A_{min}=1\) khi \(2017\le x\le2018\)
\(B=\left|x-1\right|+\left|2019-x\right|+\left|x-1999\right|\ge x-1+2019-x+\left|x-1999\right|\)
\(B\ge\left|x-1999\right|+2020\ge2020\)
Dấu = xảy ra khi \(\left\{{}\begin{matrix}x-1\ge0\\2019-x\ge0\\x-1999=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}1\le x\le2019\\x=1999\end{matrix}\right.\Rightarrow x=1999\)
vậy \(B_{min}=2020\) khi x=1999
\(A=\left|2018-x\right|+\left|2017-x\right|\)
\(A=\left|2018-x\right|+\left|x-2017\right|\)
Áp dụng BĐT:
\(\left|A\right|+\left|B\right|\ge\left|A+B\right|\)
\(\Rightarrow A\ge\left|2018-x+x-2017\right|\)
\(\Rightarrow A\ge1\)
Dấu "=" xảy ra khi:
\(\left[{}\begin{matrix}\left\{{}\begin{matrix}2018-x\ge0\Rightarrow x\le2018\\x-2017\ge0\Rightarrow x\ge2017\end{matrix}\right.\\\left\{{}\begin{matrix}2018-x< 0\Rightarrow x< 2018\\x-2017< 0\Rightarrow x< 2017\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow2017\le x\le2018\)
B tương tự
\(A=\left|x-1004\right|-\left|x+1003\right|\)
Áp dụng BĐT \(\left|a\right|-\left|b\right|\le\left|a-b\right|\)
\(\Leftrightarrow\left|x-1004\right|-\left|x+1003\right|\le\left|x-1004-x-1003\right|\)
\(\Leftrightarrow\left|x-1004\right|-\left|x+1003\right|\le2007\)
Vậy GTLN của A là 2007. Dấu "=" xảy ra khi \(x\ge1004\) hoặc \(x\le1003\).
Sao chép