\(\sqrt{\left(x+2016\right)^2}+\sqrt{\left(x+2017\right)^2}\)

 

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 3 2017

vi x+2016> hoac bang 0 va x+2017>hoac =0=>gtnn cua hang thuc tren =0

10 tháng 3 2017

vi hai so tren deunho nhat bang0 =.> GTNN =0

3 tháng 2 2020

Đặt \(a=\sqrt[3]{16-8\sqrt{5}};b=\sqrt[3]{16+8\sqrt{5}}\)

Ta có \(a^3+b^3=32\)

\(\Rightarrow\left(a+b\right)^3-3ab\left(a+b\right)=32\left(^∗\right)\)

\(a^3.b^3=\left(16-8\sqrt{5}\right)\left(16+8\sqrt{5}\right)=16^2-\left(8\sqrt{5}\right)^2=-64\)

\(\Rightarrow ab=-4\)

Kết hợp với \(\left(^∗\right)\) \(\Rightarrow\left(a+b\right)^3+12\left(a+b\right)=32\)

\(\Rightarrow a+b=2=x\)

Thay \(x=2\)vào \(f\left(x\right)\)ta được :

\(F\left(2\right)=\left(2^3+12.2-31\right)^{2016}^{^{2017}}=1^{2016^{2017}}=1\)

Chúc bạn học tốt !!!

5 tháng 2 2017

GTNN là 8132544,5 tại x=-0,5

\(\left(x-2016\right)^2+\left(x+2017\right)^2=x^2-2.2016.x+2016^2+x^2+2.2017.x+2017^2=2x^2+2x+8132545\)Đến đây nếu là toán vio thì mình nhập casio 1 cái là ra, còn nếu bạn muốn giải tự luận thì mk sẽ làm:

\(2x^2+2x+8132545=\left(\sqrt{2x}\right)^2+2.\sqrt{2x}.\left(\frac{\sqrt{2}}{2}\right)+\left(\frac{\sqrt{2}}{2}\right)^2-\left(\frac{\sqrt{2}}{2}\right)^2+8132545=\left(\sqrt{2x}+\frac{\sqrt{2}}{2}\right)^2+8132544,5\)

Ta có: Cái vế bình phương >=0, vậy GTNN là 8132544,5 tại x=-0,5, chỗ này thì bình thường, chắc bạn biết

22 tháng 3 2017

Đặt \(a=\sqrt[3]{16-8\sqrt{5}};b=\sqrt[3]{16+8\sqrt{5}}\)

Ta có: a3 + b3 = 32

=> (a + b)3 - 3ab(a + b) = 32 (*)

a3.b3 = \(\left(16-8\sqrt{5}\right)\left(16+8\sqrt{5}\right)=16^2-\left(8\sqrt{5}\right)^2=-64\)

=> ab = -4

Kết hợp với (*) => (a + b)3 + 12(a + b) = 32

=> a + b = 2 = x

Thay x = 2 vào f(x) ta được:

\(F\left(2\right)=\left(2^3+12.2-31\right)^{2016^{2017}}=1^{2016^{2017}}=1\)

5 tháng 8 2016

1) Ta có : \(A=2x+\frac{1}{x^2}+\sqrt{2}=x+x+\frac{1}{x^2}+\sqrt{2}\)

Áp dụng bất đẳng thức Cauchy : \(x+x+\frac{1}{x^2}\ge3.\sqrt[3]{x.x.\frac{1}{x^2}}=3\)

\(\Rightarrow A\ge3+\sqrt{2}\). Dấu đẳng thức xảy ra \(\Leftrightarrow x=\frac{1}{x^2}\Leftrightarrow x=1\)

Vậy A đạt giá trị nhỏ nhất bằng \(3+\sqrt{2}\) tại x = 1

2) Đặt \(y=x+2016\) \(\Rightarrow x=y-2016\)thay vào B :

\(B=\frac{x}{\left(x+2016\right)^2}=\frac{y-2016}{y^2}=-\frac{2016}{y^2}-\frac{1}{y}\)

Lại đặt \(t=\frac{1}{y}\) , \(B=-2016t^2+t=-2016\left(t-\frac{1}{4032}\right)^2+\frac{1}{8064}\le\frac{1}{8064}\)

Dấu đẳng thức xảy ra \(\Leftrightarrow t=\frac{1}{4032}\Leftrightarrow y=4032\Leftrightarrow x=2016\)

Vậy B đạt gá trị lớn nhất bằng \(\frac{1}{8064}\)tại x = 2016

7 tháng 10 2016

x=2016

nhé bn

đúng ko vậy

bn mình

ko biết

1 tháng 8 2017

Ta có \(\left(x+\sqrt{x^2+2017}\right).\left(y+\sqrt{y^2+2017}\right)=2017\)

\(\Rightarrow\frac{x^2-x^2-2017}{x-\sqrt{x^2+2017}}.\frac{y^2-y^2-2017}{y-\sqrt{y^2+2017}}=2017\)

\(\Leftrightarrow\left(x-\sqrt{x^2+2017}\right)\left(y-\sqrt{y^2+2017}\right)=2017\)

\(\Rightarrow\left(x+\sqrt{x^2+2017}\right)\left(y+\sqrt{y^2+2017}\right)=\left(x-\sqrt{x^2+2017}\right)\left(y-\sqrt{y^2+2017}\right)\)

\(\Leftrightarrow x\sqrt{y^2+2017}+y\sqrt{x^2+2017}=-x\sqrt{y^2+2017}-y\sqrt{x^2+2017}\)

\(\Leftrightarrow2x\sqrt{y^2+2017}=-2y\sqrt{x^2+2017}\)

\(\Leftrightarrow\hept{\begin{cases}x\ge0;y\le0\\4x^2\left(y^2+2017\right)=4y^2\left(x^2+2017\right)\end{cases}}\Leftrightarrow x=-y\)

Vậy \(x+y=0\)

AH
Akai Haruma
Giáo viên
4 tháng 3 2019

Câu 1:

Tìm max:

Áp dụng BĐT Bunhiacopxky ta có:

\(y^2=(3\sqrt{x-1}+4\sqrt{5-x})^2\leq (3^2+4^2)(x-1+5-x)\)

\(\Rightarrow y^2\leq 100\Rightarrow y\leq 10\)

Vậy \(y_{\max}=10\)

Dấu đẳng thức xảy ra khi \(\frac{\sqrt{x-1}}{3}=\frac{\sqrt{5-x}}{4}\Leftrightarrow x=\frac{61}{25}\)

Tìm min:

Ta có bổ đề sau: Với $a,b\geq 0$ thì \(\sqrt{a}+\sqrt{b}\geq \sqrt{a+b}\)

Chứng minh:

\(\sqrt{a}+\sqrt{b}\geq \sqrt{a+b}\)

\(\Leftrightarrow (\sqrt{a}+\sqrt{b})^2\geq a+b\)

\(\Leftrightarrow \sqrt{ab}\geq 0\) (luôn đúng).

Dấu "=" xảy ra khi $ab=0$

--------------------

Áp dụng bổ đề trên vào bài toán ta có:

\(\sqrt{x-1}+\sqrt{5-x}\geq \sqrt{(x-1)+(5-x)}=2\)

\(\sqrt{5-x}\geq 0\)

\(\Rightarrow y=3(\sqrt{x-1}+\sqrt{5-x})+\sqrt{5-x}\geq 3.2+0=6\)

Vậy $y_{\min}=6$

Dấu "=" xảy ra khi \(\left\{\begin{matrix} (x-1)(5-x)=0\\ 5-x=0\end{matrix}\right.\Leftrightarrow x=5\)

AH
Akai Haruma
Giáo viên
4 tháng 3 2019

Bài 2:

\(A=\sqrt{(x-1994)^2}+\sqrt{(x+1995)^2}=|x-1994|+|x+1995|\)

Áp dụng BĐT dạng \(|a|+|b|\geq |a+b|\) ta có:

\(A=|x-1994|+|x+1995|=|1994-x|+|x+1995|\geq |1994-x+x+1995|=3989\)

Vậy \(A_{\min}=3989\)

Đẳng thức xảy ra khi \((1994-x)(x+1995)\geq 0\Leftrightarrow -1995\leq x\leq 1994\)

8 tháng 8 2016

a ) Đặt \(A=\sqrt{x-2}+\sqrt{4-x}\). Nhận xét A > 0

\(\Rightarrow A^2=\left(\sqrt{x-2}+\sqrt{4-x}\right)^2=2+2\sqrt{\left(x-2\right)\left(4-x\right)}\)

Vì \(\sqrt{\left(x-2\right)\left(4-x\right)}\ge0\Rightarrow2+2\sqrt{\left(x-2\right)\left(4-x\right)}\ge2\Rightarrow A^2\ge2\)

\(\Rightarrow A\ge\sqrt{2}\)(Vì A > 0)
Dấu đẳng thức xảy ra khi và chỉ khi \(\hept{\begin{cases}2\le x\le4\\\left(x-2\right)\left(4-x\right)=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=2\\x=4\end{cases}}\)

Vậy ....

b) Tương tự .

c) Đề phải là tìm GTLN 

\(C=\left|x\right|\sqrt{1-x^2}=\sqrt{x^2\left(1-x^2\right)}\) . Áp dụng bđt Cauchy : \(\sqrt{x^2\left(1-x^2\right)}\le\frac{x^2+1-x^2}{2}=\frac{1}{2}\)

Dấu đẳng thức xảy ra khi và chỉ khi \(x^2=1-x^2\Leftrightarrow x=\frac{\sqrt{2}}{2}\)hoặc \(x=-\frac{\sqrt{2}}{2}\)

Vậy ....

GTNN dễ thấy bằng 0 tại x = 0 hoặc x = -1 hoặc x = 1 

8 tháng 8 2016

a)Ta cần chứng minh BĐT \(\sqrt{T}+\sqrt{H}\ge\sqrt{T+H}\)

2 vế luôn dương bình phương ta có:

\(\left(\sqrt{T}+\sqrt{H}\right)^2\ge\left(\sqrt{T+H}\right)^2\)

\(T+H+2TH\ge T+H\)

\(2TH\ge0\) (luôn đúng do \(TH\ge0\))

Dấu = xảy ra khi \(TH\ge0\)

Áp dụng ta có \(\sqrt{x-2}+\sqrt{4-x}\ge\sqrt{x-2+4-x}=\sqrt{2}\)

Dấu = xảy ra khi (x-2)(4-x)\(\ge\)0 suy ra \(\orbr{\begin{cases}2\le0\le4\\\left(x-2\right)\left(4-x\right)=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=2\\x=4\end{cases}}\)

Vậy ....

b) Áp dụng tương tự ta có:

\(\sqrt{7-x}+\sqrt{x-5}\ge\sqrt{7-x+x-5}=\sqrt{2}\)

Dấu = khi (7-x)(x-5)\(\ge\)0 suy ra \(\orbr{\begin{cases}x\le5\le7\\\left(7-x\right)\left(x-5\right)=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=7\\x=5\end{cases}}\)

Vậy...

c)Ta thấy \(\left|x\right|\sqrt{1-x^2}\ge0\)

Dấu = khi x=0 hoặc x=±1