K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 1 2017

a)Tam giác ABC cân tại A =) AB=AC=7+2=9(cm)

Xết tam giác AHB có góc H=900

Theo định lí py-ta-go, ta có::

AB2- AH2= BH2

(=)81-49=BH2

(=)32=BH2

Xét tam giác BHC có góc H=900

Theo định lí pu-ta-go, ta có:

BH2+HC2 =BC2

(=) 32+22 =BC2

(=)32+4 = BC2 (=) 36 =BC2 =) BC= 6
17 tháng 1 2017

mk đâu có thấy hình nào đâu bn

16 tháng 5 2017

câu a: có 2 bước

bước 1 : tính cạnh BH

ta có: AB = AC = 7 +2 =9

theo định lý Py -ta -go:

ta có : BH2 = AB2- HB2

BH2= 92-72

=>BH=\(\sqrt{32}\)

bước 2: tính cạnh BC

theo định lí Py-ta-go

ta có: BH2 + HC2=BC2

=>BC2= \(\sqrt{32}\)2 + 22 =36

=> BC = \(\sqrt{36}\) = 6

câu b: có 2 bước

bước 1: tìm cạnh BH

ta có AB = AC= 4+1=5

theo định lí Py-ta-go

ta có BH2 = AB2 - AH2

BH2 = 52-42

=> BH= 3

bước 2 : tìm cạnh BC

theo định lí Py-ta-go

ta có : BC2= HC2+BH2

BC2= 12+32

=>BC=\(\sqrt{10}\)

30 tháng 1 2019

a)Xét tam giác ABC cân tại A\(\Rightarrow\)AB = AC 1

Mà AC = AH + HC =7 + 2 = 9 (cm) 2

Từ 1 và 2 \(\Rightarrow\)AB = AC = 9 (cm)

Xét tam giác ABH vuông tại H

Áp dụng định lí Py-ta-go,ta có:

AB2 = BH2 + AH2

\(\Rightarrow\)92 = BH2 + 72

BH2 = 92 - 72

BH2 = 81 - 49

BH2 = 32\(\Rightarrow\)BH = \(\sqrt[]{32}\) (cm)

Xét tam giác BHC vuông tại H

Áp dụng định lí Py-ta-go, ta có:

BC2 = BH2 + HC2

\(\Rightarrow\)BC2 = \(\sqrt[]{32}\)2 + 22

BC2 = 32 + 4

BC2 = 36\(\Rightarrow\)BC = 6 (cm)

b)Xét tam giác ABC cân tại A\(\Rightarrow\)AB = AC 1

Mà AC = AH + HC = 4 + 1 = 5 (cm) 2

Từ 1 và 2 \(\Rightarrow\)AB = AC = 5 (cm)

Xét tam giác ABH vuông tại H

Áp dụng định lí Py-ta-go, ta có:

AB2 = HB2 + AH2

\(\Rightarrow\)52 = HB2 + 42

HB2 = 52 - 42

HB2 = 25 - 16

HB2 = 9 \(\Rightarrow\)HB = 3 (cm)

Xét tam giác BHC vuông tại H

Áp dụng định lí Py-ta-go, ta có:

BC2 = HC2 + BH2

\(\Rightarrow\)BC2 = 12 + 32

BC2 = 1 + 9

BC2 = 10\(\Rightarrow\)BC = \(\sqrt[]{10}\) (cm)

6 tháng 2 2018

Tam giác ABC cân tại A ta có: AB = AC = CH + HA = 2 + 7 =9

Trong tam giác vuông BHA, ta có ∠(BHA) =90°

Áp dụng định lí pitago, ta có: AB2=BH2+HA2

Suy ra: BH2=AB2-AH2=92-72=81-49=32

Trong tam giác vuông BHC, ta có ∠(BHC) =90°

Áp dụng định lí pitago ta có: BC2=BH2+HC2 mà BH2 = 32, HC2 = 22 = 4

 

BC2 =32 + 4 =36 ⇒ BC = √36 = 6 cm

17 tháng 7 2019

Tam giác ABC cân tại A nên ta có: AB=AC= AH + HC =4+1=5

Trong tam giác vuông BHA ta có ∠(BHA) =90°

Áp dụng định lí pitago, ta có: AB2=BH2+HA2

Suy ra: BH2=AB2-AH2=52-42=25-16=9

Trong tam giác vuông BHC, ta có ∠(BHC) =90°

Áp dụng định lí pitago ta có: BC2=BH2+HC2

BC2=9+1=10 =>BC=√10

16 tháng 1 2017

hình đâu

24 tháng 1 2017

hình ở đâu zợ bn Trần Thị Ngọc Ánh

Ta có: AB=AC(ΔABC cân tại A)

nên AB=AH+HC=7+2=9(cm)

Xét ΔAHB vuông tại H có 

\(HB^2+HA^2=AB^2\)

\(\Leftrightarrow BH^2=9^2-7^2=81-49=32\)

hay \(HB=4\sqrt{2}\left(cm\right)\)

Xét ΔBHC vuông tại H có 

\(BC^2=BH^2+CH^2\)

\(\Leftrightarrow BC^2=\left(4\sqrt{2}\right)^2+2^2=36\)

hay BC=6(cm)

16 tháng 1 2017

Giải:

a)

A B C H 1 2 Độ dài cạnh AC là:

AH+HX=7+2=9(cm)

\(\Delta\) ABC là \(\Delta\) cân nên có hai cạnh AB và AC bằng nhau.

Áp dụng định lí Pi-ta-go vào \(\Delta\) ABC(góc H1=90 độ), ta có:

BC^2=BA^2+CA^2

Thay: BC^2=9^2+9^2

BC^2=81+81

=162

=> BC= \(\sqrt{162}\) = 9\(\sqrt{2}\)

16 tháng 1 2017

... hình ở đâu vậy bạn

18 tháng 1 2017

a)Áp dụng định lý Py-ta-go vào tam giác vuông ABH ta có:

AB2=AH2+BH2

72+BH2=92

\(\Rightarrow\)BH2=92-72

BH2=32

\(\Rightarrow\)BH=\(\sqrt{32}\)

Áp dụng định lý Py-ta-go vào tam giác vuông HBC ta có:

BC2=BH2+HC2

32+4=BC2

BC2=36

\(\Rightarrow\)BC=\(\sqrt{36}\)=6

Vậy cạnh đáy=6cm

b) Giải tương tự câu a ta được cạnh đáy =\(\sqrt{10}\)cm

Chúc bạn học tốt!