K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 7 2019

Tam giác ABC cân tại A nên ta có: AB=AC= AH + HC =4+1=5

Trong tam giác vuông BHA ta có ∠(BHA) =90°

Áp dụng định lí pitago, ta có: AB2=BH2+HA2

Suy ra: BH2=AB2-AH2=52-42=25-16=9

Trong tam giác vuông BHC, ta có ∠(BHC) =90°

Áp dụng định lí pitago ta có: BC2=BH2+HC2

BC2=9+1=10 =>BC=√10

16 tháng 5 2017

câu a: có 2 bước

bước 1 : tính cạnh BH

ta có: AB = AC = 7 +2 =9

theo định lý Py -ta -go:

ta có : BH2 = AB2- HB2

BH2= 92-72

=>BH=\(\sqrt{32}\)

bước 2: tính cạnh BC

theo định lí Py-ta-go

ta có: BH2 + HC2=BC2

=>BC2= \(\sqrt{32}\)2 + 22 =36

=> BC = \(\sqrt{36}\) = 6

câu b: có 2 bước

bước 1: tìm cạnh BH

ta có AB = AC= 4+1=5

theo định lí Py-ta-go

ta có BH2 = AB2 - AH2

BH2 = 52-42

=> BH= 3

bước 2 : tìm cạnh BC

theo định lí Py-ta-go

ta có : BC2= HC2+BH2

BC2= 12+32

=>BC=\(\sqrt{10}\)

30 tháng 1 2019

a)Xét tam giác ABC cân tại A\(\Rightarrow\)AB = AC 1

Mà AC = AH + HC =7 + 2 = 9 (cm) 2

Từ 1 và 2 \(\Rightarrow\)AB = AC = 9 (cm)

Xét tam giác ABH vuông tại H

Áp dụng định lí Py-ta-go,ta có:

AB2 = BH2 + AH2

\(\Rightarrow\)92 = BH2 + 72

BH2 = 92 - 72

BH2 = 81 - 49

BH2 = 32\(\Rightarrow\)BH = \(\sqrt[]{32}\) (cm)

Xét tam giác BHC vuông tại H

Áp dụng định lí Py-ta-go, ta có:

BC2 = BH2 + HC2

\(\Rightarrow\)BC2 = \(\sqrt[]{32}\)2 + 22

BC2 = 32 + 4

BC2 = 36\(\Rightarrow\)BC = 6 (cm)

b)Xét tam giác ABC cân tại A\(\Rightarrow\)AB = AC 1

Mà AC = AH + HC = 4 + 1 = 5 (cm) 2

Từ 1 và 2 \(\Rightarrow\)AB = AC = 5 (cm)

Xét tam giác ABH vuông tại H

Áp dụng định lí Py-ta-go, ta có:

AB2 = HB2 + AH2

\(\Rightarrow\)52 = HB2 + 42

HB2 = 52 - 42

HB2 = 25 - 16

HB2 = 9 \(\Rightarrow\)HB = 3 (cm)

Xét tam giác BHC vuông tại H

Áp dụng định lí Py-ta-go, ta có:

BC2 = HC2 + BH2

\(\Rightarrow\)BC2 = 12 + 32

BC2 = 1 + 9

BC2 = 10\(\Rightarrow\)BC = \(\sqrt[]{10}\) (cm)

21 tháng 11 2017

nh 98): Xét ΔABC và ΔABD có:

Giải bài 34 trang 123 Toán 7 Tập 1 | Giải bài tập Toán 7

Nên ΔABC = ΔABD (g.c.g)

- Hình 99): Ta có:

Giải bài 34 trang 123 Toán 7 Tập 1 | Giải bài tập Toán 7

Xét ΔABD và ΔACE có:

Giải bài 34 trang 123 Toán 7 Tập 1 | Giải bài tập Toán 7

Nên ΔABD = ΔACE ( g.c.g)

Xét ΔADC và ΔAEB có:

Giải bài 34 trang 123 Toán 7 Tập 1 | Giải bài tập Toán 7

    DC = EB (Vì DC = DB + BC ; EB = EC + BC mà DB = EC)

Nên ΔADC = ΔAEB (g.c.g)

21 tháng 11 2017

Xem hình 98)

∆ABC và ∆ABD có: 

ˆA1A1^=ˆA2A2^(gt)

AB là cạnh chung.

ˆB1B1^=ˆB2B2^(gt)

Nên ∆ABC=∆ABD(g.c.g)

Xem hình 99)

Ta có:

ˆB1B1^+ˆB2B2^=180(Hai góc kề bù).

ˆC1C1^+ ˆC2C2^=180(Hai góc kề bù)

Mà ˆB2B2^=ˆC2C2^(gt)

Nên ˆB1B1^=ˆC1C1^

* ∆ABD và ∆ACE có:

ˆB1B1^=ˆC1C1^(cmt)

BD=EC(gt)

ˆDD^ = ˆEE^(gt)

Nên ∆ABD=∆ACE(g.c.g)

* ∆ADC và ∆AEB có:

ˆDD^=ˆEE^(gt)

ˆC2C2^=ˆB2B2^(gt)

DC=EB

Nên ∆ADC=∆AEB(g.c.g)

24 tháng 12 2016

hay thật

 

24 tháng 12 2016

Merry Christmas, too!

31 tháng 8 2020

Giải sách bài tập Toán 7 | Giải sbt Toán 7         Hình bs 7

31 tháng 8 2020

                                                     Bài giải

a b c d

Bạn ơi hình bs là gì ? Mà lấy đâu ra \(\widehat{C_1}\text{ ; }\widehat{D_2}\)

9 tháng 2 2019

hình nào ?

15 tháng 3 2020

Hình đâu bạn ei

12 tháng 8 2016

Tam giác DKE có: 

++=90(tổng ba góc trong của tam giác).

+800 +400=1800

=1800 -1200

Nên 

∆ ABC  và ∆KDE có: 

AB=KD(gt)

==600và BE= ED(gt)

Do đó ∆ABC= ∆KDE(c.g.c)

Tam giác MNP không có góc xem giữa hai cạnh tam giác KDE ha ABC nên không bằng hai tam giác còn lại .

12 tháng 8 2016
  • Tam giác DKE có: ∠D + ∠K + ∠E = 180(tổng ba góc trong của tam giác).

hay ∠D + +800 +40= 1800

⇒∠D = 1800 -120= 60

Xét ∆ ABC và ∆KDE có:

AB = KD(gt)

∠B = ∠D ( cùng = 600 )

và BE = ED (gt)

Do đó ∆ABC= ∆KDE (c.g.c)

  • Tam giác MNP không có góc xem giữa hai cạnh tam giác KDE ha ABC nên không bằng hai tam giác còn lại .
20 tháng 4 2017

Góc ABC không phải là góc xen giữa BC và CA, Góc A'BC không phải là góc xen giữa hai cạnh BC và CA'. Do đó không thể sử dụng trường hợp cạnh góc cạnh để kết luận ∆ABC=∆A'B 'C' được.

7 tháng 8 2018

Góc ABC không phải là góc xen giữa BC và CA, Góc A'BC không phải là góc xen giữa hai cạnh BC và CA'. Do đó không thể sử dụng trường hợp cạnh góc cạnh để kết luận ∆ABC=∆A'B 'C' được.

20 tháng 8 2017

a) DE // AB, DE = \(\dfrac{1}{2}\)AB, IK // AB, IK = \(\dfrac{1}{2}\)AB

=> DE//IK và DE = IK

b) Xét tg GDE và tg GIK có:

DE = IK (cmt)

GDE = GIK (slt)

GED = GKI (slt)

=> tg GDE = tg GIK (g.c.g)

=> GD = GI ( c.t.ứ)

Có GD = GI = IA nên AG = \(\dfrac{2}{3}\)AD

1 tháng 5 2018

có hình ko bn

6 tháng 2 2018

Tam giác ABC cân tại A ta có: AB = AC = CH + HA = 2 + 7 =9

Trong tam giác vuông BHA, ta có ∠(BHA) =90°

Áp dụng định lí pitago, ta có: AB2=BH2+HA2

Suy ra: BH2=AB2-AH2=92-72=81-49=32

Trong tam giác vuông BHC, ta có ∠(BHC) =90°

Áp dụng định lí pitago ta có: BC2=BH2+HC2 mà BH2 = 32, HC2 = 22 = 4

 

BC2 =32 + 4 =36 ⇒ BC = √36 = 6 cm