K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 6 2019

Ta có \(a^2+b^2+c^2\ge ab+bc+ac\)

Áp dụng 

=> \(a^4+b^4+c^4\ge a^2b^2+b^2c^2+c^2a^2\ge a^2bc+ab^2c+abc^2=abc\left(a+b+c\right)\)

=> \(\frac{1}{a^4+b^4+c^4+abcd}\le\frac{1}{abc\left(a+b+c+d\right)}\)

Khi đó 

\(VT\le\frac{1}{a+b+c+d}\left(\frac{1}{abc}+\frac{1}{bcd}+\frac{1}{cda}+\frac{1}{dab}\right)\)

=> \(VT\le\frac{1}{a+b+c+d}.\frac{a+b+c+d}{abcd}=1\)

Dấu bằng xảy ra khi \(a=b=c=d=1\)

Vậy MaxA=1 khi a=b=c=d=1

23 tháng 6 2019

a;b;c la so thuc thi chua chac a;b;c > 0 dau

4 tháng 10 2018

a=4,3

b=9,2

c=1,1

d=3,7

27 tháng 1 2016

Ta có:

(abcd-c)-(abcd-b)=2017-2005=12

=>b-c=12

Vì b, c là các chữ số nên hiêu chúng lớn nhất chỉ là 9-0=9

Mà 12>9 => Vô lý

Như vậy không tồn tại b, c và cũng không tồn tại a,d

Vậy không có a, b, c, d thỏa mãn

 

27 tháng 1 2016

Cách khác:

Ta có: abcd-d=abc0 không có tận cùng là 9

-> Vô lý

29 tháng 7 2015

a=1

b=0

c=2

d=4

21 tháng 1 2017

đây là bài số nguyên nhé các bạn giúp mình đi 

20 tháng 7 2017

Abcd=2486

20 tháng 7 2017

bạn ơi cho mình xin cách giải chi tiết

22 tháng 3 2017

Đề bài sai rồi bạn ơi